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ABSTRACT

An approach for computing worst-case flutter margins has been formulated in a robust stability

framework. Uncertainty operators are included with a linear model to describe modeling errors and flight

variations. The structured singular value, It, computes a stability margin that directly accounts for these

uncertainties. This approach introduces a new method of computing flutter margins and an associated

new parameter for describing these margins. The _t margins are robust margins that indicate worst-case

stability estimates with respect to the defined uncertainty. Worst-case flutter margins are computed for

the F/A-18 Systems Research Aircraft using uncertainty sets generated by flight data analysis. The robust

margins demonstrate flight conditions for flutter may lie closer to the flight envelope than previously

estimated by p-k analysis.
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state matrix

.th
x term in Pad6 or Roger form of unsteady aerodynamic force matrix

state matrix of transfer-function operator matrix

state matrix of unsteady aerodynamic force matrix

input matrix of transfer-function operator matrix

input matrix of unsteady aerodynamic force matrix

mean aerodynamic chord

dimension of i th full block of complex uncertainty

damping matrix

dimension of i th scalar block of complex uncertainty

space of complex valued matrices of dimension n by m

output matrix of transfer-function operator matrix

output matrix of unsteady aerodynamic force matrix

scaling matrix

feedthrough matrix of transfer-function operator matrix

feedthrough matrix of unsteady aerodynamic force matrix

set of scaling matrices

set of time-invariant and time-varying scaling matrices

imaginary part of eigenvalue

uncertain imaginary part of eigenvalue



er

e r

F l (.,.)

F u (.,-)

g

G

G

G

H 2

H_,

i

in

I

I n

J

J

k

k

K

KEAS

LFT

LMI

LTI

LTV

Lo,,

L 2

L2(-,_,oo )

L2[0,_)

m

M

n

real part of eigenvalue

uncertain real part of eigenvalue

lower-loop linear fractional transformation in definition 3.1.2
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frequency-domain Lebesgue space in definition 2.1.7
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CHAPTER 1

INTRODUCTION

Aeroelastic flutter is a potentially destructive instability resulting from an interaction between aero-

dynamic, inertial, and structural forces) The stability properties of the aeroelastic dynamics must be

investigated to determine a flight envelope that is clear of flutter instabilities for new aircraft designs or

new configurations of current aircraft. Analytical predictions of the onset of flutter must be accurate to

reduce dangers and costs associated with experimental estimation. 2

Critical flutter conditions are the points closest to the flight envelope at which flutter instabilities

occur. This concept of closeness is formally defined here as a flutter pressure that considers the critical

dynamic pressure for a constant Mach value. Obviously, different flutter measures such as a flutter speed

can be defined because a unique equivalent airspeed is associated with each dynamic pressure for a given

Mach number; however, this paper uses definition 1.0.1 for a flutter pressure to describe the critical

flutter flight conditions.

Definition 1.0.1: Aflutter pressure is the smallest value of dynamic pressure for which an aircraft at

a particular Mach number experiences aflutter instability.

The flutter pressure is used to compute a stability margin, or flutter margin, that indicates the distance

between the flutter pressure and a reference point. A common flutter margin, F, considers the difference

in dynamic pressure between the flutter pressure and a point on the edge of the flight envelope. Another

common flutter margin, FI, considers the percentage difference between equivalent airspeeds at the flutter

condition and a point within the flight envelope.

Definition 1.0.2: A flutter margin relates a measure of distance between the flight condition associ-

ated with the flutter pressure and a reference point.

The traditional p-k method has been extensively used to compute flutter margins for a variety of

military and commercial aircraft. 3 This iterative method uses an analytical dynamic model coupled with
harmonic motion solutions for the unsteady aerodynamic forces. The p-k method predicts flutter margins

entirely from a theoretical model that may not accurately describe the true dynamics of the airplane. The

resulting flutter margins do not account for possible variations between the model and the aircraft.

The community studying aeroelasticity has identified the development of improved methods for

characterizing flutter margins as a vital research area. 4 Flight testing for envelope expansion incurs

dramatic time and cost because stability margins are not computed with a high level of confidence using

traditional methods. 2 The flutter dynamics often exhibit an explosive behavior that results in a sudden

change in stability for a small change in flight conditions. Thus, small errors in predicted margins could

have grave consequences for aircraft and crews operating near the flutter conditions.

Several approaches exist for characterizing accurate flutter margins using flight data generated by the

aircraft. These data describe the true dynamics and can be used to generate realistic models and compute

confident flutter margins. Parameter estimation algorithms have been developed to directly identify an

aeroelastic model from the flight data. 5' 6 The accuracy of the resulting model can deteriorate as the com-

plexity and number of degrees of freedom of the system increase and signal-to-noise ratios decrease from

optimal wind-tunnel conditions to realistic flight levels. Modal filtering has been introduced in associa-

tion with parameter estimation algorithms to simplify analysis by decoupling the system into a set of

6



first-order responses.7' 8This typeof filtering doesnot guaranteerobustnessandmay not performwell
for systemswith many closely-spacedmodal natural frequenciesthat cross and shift as flight
conditionschange.

Other approachestowardcomputingconfidentflutter marginsevaluatethe robustnessof a stability
marginwith respectto changesin the modelasanindicationof theconfidencein that margin.A flutter
marginrobust to perturbationsto the model is a confidentmarginbecausemodel inaccuraciesdo not
affect that margin. An algorithmhasbeendevelopedto computethe most critical flutter margin with
respectto first-orderperturbationsin amodel.9This methodconsidersonly parametricperturbationsand
canbecomputationallyexpensive.A robustcontrolframeworkhasbeenadoptedusinga feedbackstruc-
tureto relatethestructuralmodelandtheaerodynamicmodel,loThis approachuseshighly conservative
robustnessconditionswith respectto anuncertaintystructurethat maynot bephysicallymeaningful.A
similar approachis adoptedallowing unmodeleddynamicsand high-order parametricperturbations
basedon seriesexpansion.llStatisticalapproachesarealsoconsideredto formulatea flutter probability
measure.12,13 These approaches will converge to a robustness indicator using Monte Carlo simulations,

but the computation time can be prohibitive for complex systems. The robustness measures for these

perturbation and statistical approaches are suspect because no global guarantees can be made as to pertur-

bations not explicitly considered by the minimization algorithms or the Monte Carlo simulations.

An approach to computing flutter margins that guarantees a level of robustness and directly accounts

for flight data is presented herein. 14 An aeroelastic model is formulated in a formal robust stability frame-

work that uses a set of norm-bounded operators, & to describe modeling errors and uncertainty. A multi-

variable robust stability measure known as the structured singular value, It, computes flutter pressures

that are robust to the amount of modeling errors as determined by A. Z5 A robust flutter margin problem is

posed by questioning what is the largest increase in dynamic pressure for which the plant is stable despite

possible modeling errors described by ,_.

Flight data are easily incorporated into the It analysis procedure. The modeling errors are determined

by comparing transfer functions obtained by flight data with transfer functions predicted by the analytical
model. The norm bound on A is chosen based on these observed errors. A model validation condition is

used to ensure the A is sufficient to account for multiple data sets without being excessively conservative.

With respect to A, a worst-case flutter boundary is computed that directly accounts for flight data.

This method is inherently different from traditional algorithms based on p-k methods or parameter

identification and robustness approaches. The It method uses information from both an analytical model

and flight data; traditional approaches use only one of these sources (fig. 1.1). Methods that use only an

analytical model can be inaccurate, and methods that use only the flight data can fail if the data are of

poor quality. The It method uses the flight data to improve the analytical model by adding uncertainty

operators. Poor quality flight data will merely increase the difficulty of obtaining a reasonable uncertainty

description resulting in a small A. The robust margins will be similar to the nominal margins in this case,

which makes intuitive sense because any information obtained from the data should only enhance the

plant model and improve the accuracy of the flutter margin.

The concept of computing robustness in flutter margins has been recognized for its importance and

has recently been termed a state-of-the art research area in aeroelasticity. I6 Informal measures of robust-

ness are not necessarily useful because the informal measures provide no guarantee for the system stabil-

ity. The It method is based on operator theory and provides a well-defined concept of robustness that has

a clear set of guarantees as to the stability properties of the system.

7
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970968

Figure 1.1. Information flowchart for traditional and I-t methods to compute flutter margins.

The _t method also allows consideration of a rich set of modeling errors with direct physical interpre-
tations. Traditional techniques compute robustness with respect to a theoretical estimate of modeling

errors that can be too conservative or overly optimistic. The _t method is able to use flight data to deter-

mine these errors by employing model validation algorithms that are developed specifically for compar-

ing data with uncertain models in the p. framework. Thus, the resulting stability margins directly account

for the flight data when determining robust flutter pressures.

Robust, or worst-case, flutter margins are computed for the F/A-18 Systems Research Aircraft (SRA)

using the I.t method. The flutter results presented represent an improvement to previous flutter results for

the F/A-18 SRA computed using the traditional p-k method. Nominal flutter margins computed using the

la method but ignoring all uncertainty operators are shown to closely match the p-k method flutter

margins. These results lend validity to the pt method as an accurate indicator of flutter instability. Robust

flutter margins are computed with the la method by directly accounting for modeling uncertainty to repre-

sent conservative worst-case stability margins. The computation of the l.t method takes only a few min-

utes on a standard workstation.



CHAPTER 2

ROBUST STABILITY

2.1 Signals

A common definition of a signal is a Lebesgue measurable function that maps the space of real

numbers R into R n . A space of such signals is denoted S.

Definition 2.1.1: The space of signals that are Lebesgue measurable functions is S.

S = {f:R_R n} (1)

Analog measurements x(t) of physical systems are real vector functions of the real parameter

t describing time and thus are valid members of the space of signals, x(t) _ S. Values of the time param-

eter, which are often arbitrarily numbered as a distance from some reference point, actually extend to

positive and negative infinity. Stability for physical systems must ensure stability for all values of time. A

time-domain 2-norm is defined as a measure of size (or energy) for time-domain signals that considers
all time.

Definition 2.1.2: The 2-norm measures the energy of a signal x(t) _ S.

1

][x(t)ll2 = (j'__ [x(t)12dt) 2 (2)

One characteristic of a stable system is only finite-energy output signals are generated in response to

finite-energy input signals. Signals with finite energy are known as "square integrable" because the inte-

gral of the square of the signal is finite. The Lebesgue space of square integrable signals is defined as

L2(-oo,_o). This space is also referred to as the infinite-horizon Lebesgue 2-space to denote that the norm
uses an integral over infinite time.

Definition 2.1.3: The space L2(-e_,,_ ) consists of square integrable time-domain signals.

L2(-°°,oo) = {x(t) • x _ S, Ilx(t)l[2 < oo} (3)

Signals associated with physical systems are only known for values of time greater than the time at

which measurements are started. Stability analysis and norm computations using these signals cannot use
properties of the signal before the starting time because no information is known. The traditional method

of characterizing these signals is to assume the signal is identically zero for all times before the starting

time. The time value at which measurements are started can be chosen without loss of generality and is

usually chosen to be t = 0. The space L2[0,oo ) is defined as a subset of L2(-_,_o ) to emphasize
such signals.

Definition 2.1.4: The space L2[0,_ ) c L2(-_,_ ) consists of square integrable time-domain
signals that are identically zero for all t < O.

L2[O,°°) = {x(t)" j_o []x(t)ll2dt<oo , x(t)= 0 forallt<O} (4)

9



A similar space L2(-°°,0] C L2(-°°,°°) is defined for signals x(t) that are assumed to begin at

t = _oo and are identically zero for all times t = 0. The integral to compute the energy for elements of

this space considers t = _oo until t > 0.

Frequency-domain signals are often considered in stability analysis but do not fall into the set of

signals, S. These signals f(/co) are complex-valued functions of the imaginary unitj = ,,/'L-_, and the real

frequency variable co is expressed in rad/sec. The set, Sj o_' is defined for frequency-domain signals.

Definition 2.1.5: The space of frequency-domain signals is Sj co"

C n

Sjco = {f(jco)'jR---) and f*(jco)=f'(-jco)}
(5)

A frequency-domain 2-norm is formulated to compute a measure of energy.

Definition 2.1.6: The 2-norm measures the energy of the signal f (j co) _ Sj co.

1

(6)

A frequency-domain Lebesgue space, L 2 , is defined for finite-energy signals.

Definition 2.1,7: The space L 2 consists of frequency-domain signals with finite energy.

L 2 = {f(jco) • f _ Sjco, Ilfl12< oo}
(7)

The spaces -/2(-oo,oo) and L 2 are isomorphic Hilbert spaces under the appropriate inner products

through the Fourier transform, which means the spaces have equivalent algebraic properties. This

relationship is used to simplify notation by rarely distinguishing between time-domain and frequency-

domain signals except where the context does not make it clear. The notations for the 2-norm of time

domain and frequency domain are also not distinguished because the notations are equivalent, as demon-

strated by Parseval' s identity. 17

An important subspace of L 2 is the Hardy space, H 2. This space contains the complex variable func-

tions that are analytic in the open right-half of the complex plane and have finite 2-norm.

Definition 2.1.8: The Hard), space, H 2 c L 2, consists of the following functions.

H 2 = if(s)" f(s) E L 2 andf(s) is analytic in Re(s) > 0}
(8)

The space L2[0,°°) is isomorphic to H 2 through the Laplace transform. Members of this set can be

interpreted as frequency-domain representations of finite-energy time-domain signals that are assumed to

be zero at t < 0.

2.2 Systems

A system P is defined as an operator mapping the space of input signals Sin to the space of output

signals Sou t. This definition implies that for any w _ Sin and z = Pw, then z e Sou t.

10



p • Si n ---.) Sout (9)

This paper will consider linear, time-invariant systems defined by state-space equations.

(tq = I_cPB_IIx(t q (10)(t)J e D Lu(t).J

The signal x(t) _ R ns is the state vector, u(t) _ R ni is the input vector, and y(t) _ R n° is the output

vector. The state update matrix is Ap _ R nsx ns; Bp _ R ns x ni determines how the input affects the
Rno x nistates; Cp _ R n° x n s computes the outputs as a linear combination of states; and Dp _ is the

direct feedthrough from inputs to outputs. The operator S = {Ap, Bp, Cp, Dp } denotes the time-domain

state system.

Linear time-invariant state-space systems are commonly represented by transfer-function operators.

These functions, P(s), are complex-valued matrices of the complex Laplace transform variable, s. Such a

transfer-function matrix exists if and only if the state-space system is linear and time-invariant.

P(s) = Dp + Cp(slns-Ap)-lBe (11)

Stability must be considered over the infinite-horizon time lengths so that the operators used map

L2(-oo,oo ) into L2(-oo,_ ). Properties of the Fourier transform relating L2(-oo,oo ) and L 2 imply a state-

space system, S : L2(-_,oo ) ---)L2(-oo,_o), is linear and time-invariant if and only if the associated

transfer-function matrix P is such that y = Pu e L 2 for any u _ L 2. This condition leads to consideration

of the gain for these signals.

Ilyl12 llPull2

Ilul12 Ilul12
(12)

This ratio of 2-norms will be finite if the system is stable. Properties of the 2-norm are used to derive

a condition on the system transfer-function operator, P. This condition is referred to as an induced norm

because it results from consideration of signal norms associated with the operator. The L 2 induced norm

is defined as the H -norm.

Definition 2.2.1: Define the _-norm for transfer-function operators.

IIPII = sup _(P(j co)) (13)
co

A space of operators with finite _-norm is denoted as Lo.

Definition 2.2.2: The space Loo consists of systems with finite Hoo-norm.

L_ = {P" IIPII_< _} (14)

Transfer functions of linear time-invariant systems are stable if and only if z = Pw and w e H 2 implies

z e H 2. This implication results from the Laplace isomorphism between L2[0,oo) and H 2 space. These

11



transfer functions are shown to be analytic in the open right-half complex plane with finite H_.-norm.

Define the space H to contain these operators.

Definition 2.2.3: The space H_ consists of transfer functions of stable, linear, time-invariant

systems with finite H-norm.

H = {P : P is analytic in Re(s)> 0 and IIPlloo< oo} (15)

A subspace ;k_o_ is often defined for rational elements.

Definition 2.2.4: The space, R'¢i_ c H_, consists of rational elements of H .

;k_ = {P : P _ H_ andP is rational} (16)

Transfer-function operators of linear, time-invariant state-space systems are rational functions of the

Laplace transform variable, s. These transfer functions P _ ;k_ if and only if P is stable such that no

poles lie in the closed right-half plane. The space RH, which may appear to be a mathematical abstrac-

tion, is thus shown to have a physical interpretation. _w'd_ 'is merely the operator theory representation of

stable, rational, transfer functions.

2.3 Small Gain Theorem

Stability of a linear time-invariant system is determined by location of all poles in the left-half plane.

Robust stability in the H_ and p. frameworks is determined by considering an interconnection of stable

operators. The basis for determining stability of these interconnections of operators is the "small

gain theorem."

The small gain theorem states that a closed-loop feedback system of stable operators is internally

stable if the loop gain of those operators is stable and bounded by unity. Several formulations of the small

gain theorem are derived for various signals and systems. Theorem 2.3.1 presents the formulation used
17

for this paper.

Theorem 2.3.1 (Small Gain Theorem): Given the feedback interconnection structure of figure 2.1

for stable transfer-function operators P, A : L 2 ---)L 2 with P, A _ ;_¢J ; if the Hoo-norm of the loop gain

is bounded by unity such that IIPAII < 1, then:

1. the closed-loop system is well-posed and internally stable.

2. a unique y, w _ L 2 is associated with each u _ L 2 .

This small gain theorem is overly restrictive in the sense of requiring P, A _ RH,_. A more general

small gain theorem is formulated for operators not restricted to lie in the subspace ;k_; theorem 2.3.1 is

a special case of this general theorem. 18 The extended operator space in the general small gain theorem
allows consideration of robustness for systems composed of nonlinear and time-varying operators. The

requirement of considering stable, rational, transfer-function operators is explicitly stated in the theorem

to emphasize that the nominal aeroelastic system considered in this paper is assumed to be stable and the

flutter margin is associated with a destabilizing perturbation to that nominal system.

12
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Figure 2.1. Block diagram for the small gain theorem.

The second condition in theorem 2.3.1 is associated with the first condition guaranteeing a well-posed

and stable system. This uniqueness condition can be understood by consideration of the solution y for the
loop equations shown in figure 2.1.

y = P(u + w)

= (i_ pA)_lp u (17)

The inverse term, (I - PA) -l, has a magnitude of infinity if the norm of PA is allowed to be unity.

Such a condition would allow the norm of signal y to be infinite despite a norm-bounded u input signal.

Restricting IIP II < 1 ensures the inverse term exists and a unique finite-norm y is generated in response

to a finite-norm u. The issue of well-posedness requires this condition to hold at s = oo and is automati-

cally considered by the _-norm.

2.4 Robust Stability

The small gain theorem can be directly used to analyze robust stability of a plant model with respect

to a set of perturbations. 19 These perturbations are used to describe uncertainty in the analytical plant

model caused by errors and unmodeled dynamics. Usually, the exact value of the modeling error is not

known, but a norm-bounded, real scalar, tx > 0, can be placed on the size of that error. Define the A

of norm-bounded operators describing these perturbations that affect the plant P through a
feedback relationship.

zx= {_ • IIAIIoo_<_} (18)

The small gain theorem allows consideration of the entire set of possible modeling uncertainties as

described by all A _ A. The Hoo-norm of the loop gain cannot be explicitly computed for these systems

because an infinite number of loop gains PA generated by the A exists. The triangle inequality of norms
can be used to generate a sufficient condition for robust stability of P.

IIPAllo__ tlPlloollAIIoo (19)

A condition for robust stability of the closed-loop system can be stated.

Lemma 2.4.1: The plant P is robustly stable to the set of uncertainty perturbations, & that enter the

system as in figure 2.1 with [IAII -<o_ for all A _ A if

13



1 (20)
IIPII < a

Lemma 2.4.1 shows a sufficient, but not necessary, condition for robust stability. The structured

singular value, It, is introduced in the next chapter as a less conservative measure of robust stability that is

sufficient and necessary.

An excellent illustrative example has previously been presented 18 to demonstrate the issue of robust

stability. This example uses classical arguments to compute a robust stability condition for a simple

system that is seen to be identical to the robust stability condition generated using the small gain theorem
and lemma 2.4.1. A similar example is given below for the feedback interconnection in figure 2.2.

__ IK [ _ 970970

Figure 2.2. Block diagram with uncertainty for the example system.

The single-input and single-output elements in the nominal system model (fig. 2.2) are p, which

represents the plant dynamics; a, which represents actuator dynamics; and k, which represents a feedback
controller. Each of the nominal system elements are stable transfer functions contained in ;k_. A

modeling error exists on the output of the actuator that is represented by a multiplicative uncertainty

operator, 8 e R'H_, on the output of the element a.

The transfer function from w to z can be computed as follows.

z = (._(l+akp)-lakp)w (21)

Internal stability of the closed-loop feedback system is equivalent to stability of the feedback system

shown in figure 2.3 with the operator g = -( 1 + akp) -1 akp.

Z W

970971

Figure 2.3. Block diagram for robust stability analysis of the example system using the small gain

theorem.
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Becausethe operators_5,g _ _ are stable, the Nyquist criterion determinesthe closed-loop
systemis stableif andonly if theNyquistplot of _gdoesnotencirclethe-1 point.This stability condi-
tion isequivalentto thefollowing normcondition.

s_p Ig(Jco)_5(jco)[< 1 (22)

This condition is an _-norm conditionon the loop gain, gS.Thus, classicalNyquist arguments
derive an Hoo-normcondition that is equivalentto the stability condition immediately formulatedby
applyingthesmallgaintheorem.

closed-loopstability ¢=_ IIg_ll_ < 1 (23)

The error in the actuator command is unknown and possibly time-varying, so the operator 5 is used to

allow consideration of a range of errors. Assume the actuator is weighted such that the range of errors is

described by the set of perturbations, 11511 < 1. Lemma 2.4.1 is used to generate a condition that ensures

the system is robustly stable to all actuators errors described by _5.

closed-loop stability ¢= Ilglloo< 1 (24)
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CHAPTER 3

STRUCTURED SINGULAR VALUE

3.1 Linear Fractional Transformations

The linear fractional transformation (LFT) is a common framework suitable for robust stability

analysis using arguments based on the small gain theorem. An LFT is an interconnection of operators

arranged in a feedback configuration. These operators can be constant matrices, time-domain state-space

systems, or frequency-varying transfer functions. Consider a linear operator P e C (°1 + %) x (il + i2) that

is partitioned into four elements.

p = IPll P121 (25)

LP lP: J

The LET, Fu(P, A) ,.is defined as the interconnection matrix such that the upper loop of P is closed

with the operator A _ C _1× °l

cil×°lDefinition 3.1.1: Given P _ C (°l +O2)×(il +i2) and A _ , define Fu(P, A)) as the upper-

loop LFT ofP closed with A such that y = Fu(P, A) u as in figur¢ 3.1.

Fu(P, A) = P22 +P21A(I-PllA)-Ip12 (26)

Figure 3.1 Linear fractional transformation F u (P, A).

A similar LFT is defined as FI(P, A)to represent the interconnection matrix of the lower loop of

P closed with an operator A e C _2x 02

c(°l+°2)×(il+i 2) ×o 2Definition 3.1.2: Given P _ and A E C 12 , define F u (P, A) as the lower-loop

LFT ofP closed with A such that y = FI(P, A) u as in figure 3.2.

FI(P,A) = Pll +P12A(I-P22A)-lp21 (27)
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Figure 3.2. Linear fractional transformation F I(P, A).

An example of an interconnection that is common in stability analysis is the representation of a time-

dependent state-space system as a frequency-varying transfer function. Define S as the constant matrix

whose entries are the {Ap, Bp, Cp, Dp} matrices of a state-space realization. The transfer function can be

I is an integrator.written as an upper-loop LFT involving S and the Laplace transform variable s where

:( = Apx + BpU

y - Cpx + Dpu IC P B_]
S = =:_ P(s) = Dp + Cp(sI- Ap) IBp

pD (28)
= Fu(S ' gl)

The LFT is a useful framework for analyzing complex systems with many feedback and series

interconnections of operators. Property 3.1.3 shows the main property of LFTs that will be used herein.

This property allows complex systems of several interconnected Lk-q's to be expressed as an equivalent

single LFT. The operators of the new LFT are block-structured with blocks composed of the individual

operators of the LFTs from the original system.

Property 3.1.3: Feedback and series interconnections of LFTs can be formulated as a single LFT.

This issue of stability for LFT systems is associated with the concept of a well-posed interconnection.

Stability analysis based on the small gain theorem given in theorem 2.3.1 can be used to guarantee the
LP-'I" is stable and well-posed.

3.2 Structured Uncertainty

The concept of uncertainty is formulated as a set of norm-bounded operators, A, associated with a

nominal plant, P, through an LFT feedback relationship. A family of plants, P, arises through consider-

ation of Fu(P, A) for every A e A The true plant model is assumed to lie within this family of plants.

Modeling the uncertainty as a norm-bounded operator can lead to overly conservative models. The

uncertainty description can be made more accurate by including frequency information. Formulating a

model of a physical system that is accurate at low frequencies but less accurate for representing the

system response at high frequencies is often possible. A frequency-varying transfer function, W, is gener-

ally associated with each uncertainty element to describe magnitude and phase uncertainty as it varies
with frequency.

Uncertainty can enter a system model in a linear fractional manner in several general ways. Two

typical types of uncertainty are termed "multiplicative" and "additive" uncertainty. Multiplicative
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uncertaintycanbe eitheron theinput or outputof a system.Systemswith thesetypesof uncertaintyare
easilydescribedin block diagramform.Figure 3.3showstheLFT for a plantwith input multiplicative
uncertainty. Figure 3.4 shows the plant with output multiplicative uncertainty. Figure 3.5 shows
additiveuncertainty.

970974

Figure 3.3. Family of plants P = P(I + A W) with input multiplicative uncertainty.

970975

Figure 3.4. Family of Plants P = (I + A W)P with output multiplicative uncertainty.

• _ d

70976

Figure 3.5. Family of plants P = P + AW with additive uncertainty.

Uncertainty can also be associated with specific elements of the system. These parametric uncertain-

ties are usually associated with a system operator in a feedback relationship. The number of input and

output signals of the system operator is increased to account for the additional feedback signals associ-

ated with the uncertainty operator. This operation can be demonstrated by considering P generated by a

system with an unknown pole.

{ 1 }P= (s+l)(s+x) xe [2, 3]
(29)

A norm-bounded, real, scalar, uncertainty parameter _5can be introduced to account for the possible

variation in pole value. The set of plants can be written in the LFT framework using this uncertainty oper-

ator and definition 3.1.1.
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{ E-1 1P= Fu(P, 8) • P = s +2.5 s .5 ,11811__< l, 8 _ R,
1

s + 1)(s + 2.5) (s + 1)(s + 2.5)3

(30)

A complex system with several uncertainty operators can be expressed as an LFT with a single uncer-

tainty operator using property 3.1.3. This operator is structured as a block-diagonal operator with each

block associated with the individual uncertainty operators. Two main types of uncertainty blocks exist. A

full-block uncertainty is a matrix with unknown elements. This type of block is used to describe unstruc-

tured uncertainty in a group of signals.

C nXm
Definition 3.2.1: A full-block uncertainty, A _ , has unknown elements Aij for every i _ [1, n]

andj _ [1, m].

A repeated-scalar block introduces more structure into the uncertainty description than a full block

does. Only the diagonal elements of the matrix contain unknown elements; the remaining elements are

zero. Furthermore, the diagonal elements are identical. This type of uncertainty is used tO relate input-

output signal pairs with the same uncertainty parameter.

C n×nDefinition 3.2.2: A repeated-scalar block uncertainty A _ has zero-valued elements except

an unknown parameter 8 along the diagonal such that A = 8I n . A scalar block is a repeated-scalar
block of dimension 1.

The single structured uncertainty block used for robust stability analysis is formally defined in terms

of these blocks. Let integers m, n, and p define the number of real scalar, complex scalar, and complex
.th

full blocks respectively. Define integers RI ..... R m such that the 1 repeated-scalar block of real, para-

metric uncertainty is of dimension R i by R i . Define similar integers C 1..... C n to denote the dimension

of the complex repeated-scalar blocks. The structured uncertainty description A is assumed to be norm-

bounded and belonging to the following set.

A = A = diag _RIR1 ..... _mIRm , 81Clci .... ,8 n ICn, A 1..... Ap

• _5iR _ 11,5c _ c, zxi _ Cci×ci}
(31)

Real parametric uncertainty is allowed to enter the problem as scalar or repeated-scalar blocks.

Complex uncertainty enters the problem as scalar, repeated-scalar, or full blocks• Complex uncertainty

parameters allow uncertainty in magnitude and phase to be modeled; uncertainty in physical characteris-

tics can be more accurately modeled with real parameters. The robustness analysis will be less

conservative by accounting for this structure to accurately describe the model uncertainty.

3.3 Structured Singular Value

Figure 3.6 shows the general framework for robust stability analysis. The plant operator P(s) _ R','droo

is a stable, rational, transfer-function matrix representing the aeroelastic dynamics. A norm-bounded

A e R'aroo is defined such that A (s) e A describes the modeling errors in P through a feedback relationship.
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Figure 3.6. Linear fractional transformation system for robust stability analysis using It.

The robustness of P with respect to the A can be determined using the small gain theorem as

presented in lemma 2.4.1. This condition guarantees stability for any value A _ h, if IlPll_ < 1. This
robustness condition can be overly conservative because it does not account for structure in the uncer-

tainty operator. The structured singular value, It, is defined as an alternative measure of robustness. 2°

Definition 3.3.1: Given the complex transfer-function matrix P _ R"¢_o and associated norm-

bounded set of uncertainty operators A, define It.

It(P) =
1 (32)

rain {O(A) • det(I - PA) = 0}

Define It = 0 if no A _ l_ exists such that det(I - P A) = 0.

The structured singular value is an exact measure of robust stability for systems with structured

uncertainty. The value of It determines the allowable size of uncertainty matrices for which the plant is

robustly stable as demonstrated in theorem 3.3.2. 20

Theorem 3.3.2: Given the system in figure 3.6, P is robustly stable with respect to the _k, which is1

norm-bounded by real scalar ot such that IIAI[,,_< t_ for all A _ A if and only if It(P) < 2"

The model P is usually internally weighted such that the range of modeling errors is described by the

uncertainty set A, which is norm-bounded by 1.

IIAII - l for all A e h, (33)

Theorem 3.3.3 presents the specific condition for robust stability that will be used in this paper for

unity norm-bounded uncertainty sets.

Theorem 3.3.3: Given the system in figure 3.6, P is robustly stable with respect to the A with

IIAiI <--l for all A _ A if and only/fIt(P) < 1.

A value of It < 1 implies no perturbation within A exists that will destabilize the feedback system.

This condition can also be interpreted as saying the true plant dynamics are stable, assuming these

dynamics lie within the range generated by the nominal model dynamics coupled with the set of

modeling errors.
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Obviously,l.tis dependenton theblock structureof A. Therobuststability propertiescomputedby _t
will only be accurateif a realisticuncertaintyoperatoris chosen.The structuredsingularvalue maybe
arbitrarilygreaterwhencomputedwith respectto anunstructureduncertaintyoperatorascomparedto a
highly structureduncertaintyoperator.Definition 3.3.1demonstratesthe_tcondition of theorem3.3.3 is
equivalentto thesmallgainconditionof lemma2.4.1whentheuncertaintyis unstructured.

Unfortunately,l.tis a difficult quantityto compute.Closed-formsolutionsexist to exactlycomputep.
for only a small numberof block structuresfor &. Upperandlower boundsareusedto computei.t for
generalizeduncertaintyblock structures.AppendixA showsaderivationof theupperbound,which rep-
resentsa limit on theworst-caserobustnessproperties.
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CHAPTER 4

ROBUST FLUTTER MARGINS

4.1 Nominal Aeroelastic Model

Consider the generalized equation of motion for the structural response of the aircraft. 21

M_ + Crl + Krl + 7:/Q(s)rl = 0 (34)

Rnxn R nxnFor a system with n modes, define M _ as the mass matrix, C _ as the damping matrix,

R n×nand K _ as the stiffness matrix. Define 7:/_ R as a scalar representing the dynamic pressure, and

cn xnQ(s) _ as the matrix of unsteady aerodynamic forces. This equation is valid for a particular Mach

number, with a different Q(s) describing the unsteady aerodynamic forces at a different Mach number.

Values of the aerodynamic force matrix at distinct frequencies can be derived using finite-element

models of the aircraft and panel methods for unsteady force calculations. This research uses a computer

program developed for NASA known as STARS .22, 23 This code solves the subsonic aerodynamic equa-

tions using the doublet-lattice method. 24' 25 The supersonic forces are generated using a different

approach known as the constant panel method. 26

Formulating a linear time-invariant representation of the aerodynamic forces to incorporate them into

the robust stability framework is desired. Pad6 approximations can be used to compute a rational function

approximation to the transfer-function matrix.

s A s A
Q(s) = Ao+sAI+S2A2+s--_I 3+s-_2 4

(35)

This form is often referred to as Roger's form. 27 The equation presented here includes only two lag

terms, although more terms can be included. The poles of the lag terms, [31 and [32 , are restricted to be

real and positive to maintain system stability. The matrix elements of Roger's form can be computed

using a least-squares algorithm to fit the frequency-varying aerodynamic data.

The aerodynamic lag terms can be replaced in the formulation with a finite-dimensional state-space

system represented by a transfer-function matrix using Karpel's method. 28

Q(s) = A 0+ sA 1 + s2A2 + CQ(SI- AQ)-lBQS (36)

Standard system identification algorithms, including curve-fitting or least-squares approaches, can be

used to compute the elements in the state-space portion of the formulation. The A i matrices are assumed

to be known from the low-frequency aerodynamic force data or from experimental wind-tunnel data.

A matrix fraction approach is also formulated to represent the aerodynamic forces as a linear time-

invariant system. 29' 30 This generalized form computes rational matrix polynomials in a fractional form

using a least-squares algorithm. Roger's form and Karpel's form can be shown to be subsets of the matrix

fractional form.
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The approachtaken in this paper is to fit the aerodynamicforce matrices to a single, finite-
dimensional,state-spacesystem.This form is mostsimilar to Karpel's form, exceptthe additionalA i
matricesarenotexplicitly accountedfor in theformulation.

tQ(s) = = DQ + CQ(SI- AQ)-IBQ (37)
QD

Given the number of generalized states, n, and the number of aerodynamic states, nQ, define
nQxnQ nQ×n nxnQ Rnxn

AQ _ R , BQ _ R , CQ e R , and DQ _ as the elements of the state-space

system approximating Q(s).

Fitting the aerodynamic data to a finite-dimensional State-space system is equivalent to fitting each

term in the matrix to a real, rational, proper, transfer function. This method seems to contradict the
2

methods of Roger and Karpel, which form nonproper transfer functions caused by the terms in s and s .

An approximation to these forms allows them to fall within the framework of the method used in this
s

paper. Including a high-frequency pole in the nonproper term, such as replacing s with s + 10000' would

not affect the low-frequency region of interest while ensuring stable and proper functions. With the

approximation, the forms of Roger and Karpel can be shown to be subsets of this method.

Standard frequency-domain system identification algorithms can generate a system with an arbitrarily

large number of states. This state dimension does not greatly affect the computational cost of the robust

stability analysis. Extending the robustness analysis to controller synthesis, however, places an emphasis

on limiting the state dimension. 31 Limiting the number of states in the identification process is not

directly considered here, although standard model reduction techniques can be used on the state-space
system to lower the state dimension. 15

Generating a state-space representation of the aeroelastic system, including the state-space form of

the unsteady aerodynarr_c forces, is straightforward. Consider the force vector, y, generated by the state

vector, 1"1.Define x _ R Q as the vector of aerodynamic states.

y = Q(s)r] ¢=_ [_1 = IcQBtl 1Q D _ (38)

Using x, formulate the aeroelastic differential equation.

0 = Mi_ + Cfl + KB + ?/Q(s)rl

= M_+Crl+Krl+g/y

= M_ + Crl + Krl + ?/(CQX + DQrl)

= Mi_ + Cfi + (K + F:/DQ)r ! + ?/CQX

(39)
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A state-spacesystemis formulatedusingthe generalizedstates,rl and il, andthe unsteadyaerody-
namicstates,x. Thestate-updatematrix is determinedby thefollowing threedifferential equations.

I lf 0 i 0tL l= M-I(K+?tDQ) _M-Ic __M-1C

BQ 0 AQ J

(40)

4.2 Nominal Aeroelastic Model in the Structured Singular Value Framework

The generalized equation of motion for the nominal aeroelastic system can be expressed in a form

suitable for using la analysis to compute a flutter margin. The flutter margin is dependent on the flight

condition parameters that result in a flutter instability, and l.t is defined to be the smallest perturbation

among the A that causes an instability. The obvious approach to formulating flutter analysis in the la

framework is to introduce a perturbation to a flight condition parameter and find the smallest perturbation

that causes an instability.

Essentially, the two subsystems in the nominal aeroelastic model are composed of the structural

dynamics, involving mass, damping, and stiffness matrices; and the unsteady aerodynamics scaled by the

dynamic pressure. The generalized equation of motion demonstrates the dynamic pressure linearly affects

the dynamics at a constant Mach condition. Perturbations to dynamic pressure can thus enter the system

through a feedback operator in a linear fractional manner that is perfectly suited to la analysis.

Consider an additive perturbation, 15zl_ R, on the nominal dynamic pressure, ?:/o"

?/ = ?:/o + 5?/ (41)

Separate terms in the system dynamics that involve 5z/.

0 = M_ + C_ + (K + ?/DQ)rl + ?/CQX

= Mi_ + [C/i + (K + qoDQ)TI + 77oCQX] + _7/[DQ_ + CQX]

= fi + [M-Ic/! + M-I(K + ?/oDQ)_q + ?/oM-1CQX]

+ 5z/[M-1DQTI + M-ICQx]

= _ + [M-1Cfl +M-I(K+ _oDQ)rl + ?/oM-1CQX] + 57/z

= _ + [M-1C/I + M-I(K + _/oDQ)rl + _oM-1CQX] +w

(42)

The signals z and w are introduced into this formulation to associate the perturbation in dynamic pres-

sure to the nominal dynamics in a feedback manner. The signal z can be generated as an output of the

plant because z is a linear combination of states.

= M -1z DQrl + M-ICQ x (43)
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Thesignalw is relatedto z by thedynamicpressureperturbation.

w = _5_z (44)

The state-spaceaeroelasticmodel for nominal stability analysisin the It frameworkis formulated
usingthe state-updatematrix. This matrix is determinedby thedynamicsat the nominaldynamicpres-
sure,and the additional input andoutput signalsthat introduceperturbationsto the dynamic pressure.

Thatperturbation,15z/,is not anexplicit parameterin thestate-spacemodelbecause_Sztonly affectsthe
plantthroughafeedbackrelationshipasdeterminedby thesignalsz andw. Define thetransferfunction
P(s)generatedby state-spacematricessuchthatz = P(s)w.

X

Z
- .

0 I 0

-M -I(K + ?:/oDQ) -M-1C -_/M-ICQ

BQ 0 AQ

M-IDQ 0 M-1CQ

0 _l

0
xl

0 wl (45)

Figure 4.1 shows the feedback interconnection between the perturbation in dynamic pressure and the

nominal plant model parameterized around that perturbation. This interconnection is an LFT, and the

small gain condition of lemma 2.4.1 or the It condition of theorem 3.3.3 can be directly applied to analyze

stability with respect to a variation in the flight condition 7/.

z w
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Figure 4.1. Linear fractional transformation system for nominal stability analysis in the It framework with

pararneterization around perturbation in dynamic pressure.

Formulating the nominal aeroelastic dynamics in the It framework immediately demonstrates the pro-

cedure used in computing a flutter margin. Traditional flutter analysis algorithms such as the p-k method

and the It method as applied to figure 4.1 are searching for a value of dynamic pressure that results in a

flutter instability. The nominal flutter margin question may be posed, which is answered by these methods.

Question 4.2.1 (nominal flutter margin): What is the largest perturbation to dynamic pressure for
which the nominal aeroelastic dynamics are stable ?

The dimension of the uncertainty block is the dimension of the signal z. The state-space equations for

P(s) demonstrate this dimension is the number of modes in the system, n. The number of free variables in

the It upper-bound optimization, and consequently the computational cost of It, is a function of the
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uncertaintydimension.In thisway,thenumberof aerodynamic states, nQ, does not directly affect the cost

of the flutter estimation. The only cost increase caused by these additional states is computing the fre-

quency response of the state-space matrix, which is generally much lower than the cost of computing It.

Demonstrating the aeroelastic system formulated in the It framework in figure 4.1 is straightforward.

The dynamic pressure parameterization is equivalent to the nominal state-space system given in the pre-

vious section. Simply compute the closed-loop transfer function with no uncertainty, 5zl = 0, and the

nominal system is recovered.

Wind-tunnel and ground vibration testing can experimentally determine aerodynamic stiffness and

damping matrices that are more accurate than the matrices approximated by a finite-element model.
These matrices can be incorporated into a nominal state-space model in the It framework using the deri-

vation in Appendix B.

This procedure considers variations in dynamic pressure for an aeroelastic model at constant Mach

number. The unsteady aerodynamics are highly nonlinear with variation in Mach number, and attempts to

model Mach variations in an LFT may produce highly conservative flutter margins. 32' 33 The It method

presented herein is considering flutter margins in terms of dynamic pressure as measured along lines of
constant Mach. Flutter is a function of the two variables, dynamic pressure and Mach, so computing the

dynamic pressure causing flutter for a dense set of discrete Mach values will generate an accurate portrait

of the flutter margins.

4.3 Robust Aeroelastic Model in the Structured Singular Value Framework

A robust aeroelastic model in the It framework can be generated by associating uncertainty operators,

A, with the nominal model and including the parameterization around a perturbation in dynamic pressure.

These uncertainty operators can resemble any of the forms presented in section 3.2, including parametric

uncertainty and additive and multiplicative representations of dynamic uncertainty.

Choosing a reasonable uncertainty description is crucial for determining a valid robust flutter margin.

This choice can arise logically from consideration of weaknesses in the modeling process, previous

experience with aeroelastic analysis, and comparison with observed flight dynamics. Chapter 5 gives a

noncomprehensive examination of several obvious uncertainty descriptions that may be associated with

an aeroelastic model.

The LFT is a valuable framework for formulating the robust aeroelastic model so that the model is

suitable for It analysis. The various system blocks composed of the nominal state-space model with asso-

ciated uncertainties and any additional subsystem blocks and their associated uncertainties can be

expressed as a single model and uncertainty operator.

Figure 4.2 shows the block structure used for la analysis of the uncertain aeroelastic system. The

structured singular value is computed with respect to a single, block-diagonal, structured operator that

contains the perturbation to dynamic pressure and the structured uncertainty operator along the diagonal.

The perturbation to dynamic pressure is explicitly shown to distinguish 8zl from the modeling uncer-

tainty and emphasize 8zl as a special operator used to describe a range of flight conditions.
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Figure 4.2. Linear fractional transformation system for robust stability analysis in the _t framework with

parameterization around perturbation in dynamic pressure and structured uncertainty.

The flutter margin computed for the uncertain system (fig. 4.2) is a more accurate margin than one

computed with traditional methods such as p-k. These traditional methods address the nominal flutter

problem in question 4.2.1; the robust flutter margin must consider the effect of the modeling uncertainty.

The robust flutter margin actually finds the smallest perturbation to dynamic pressure for the entire set of

plants formulated by the interconnection of the nominal dynamics and all elements A e A. Question 4.3.1

poses how to compute these margins.

Question 4.3.1 (robust flutter margin): What is the largest perturbation to dynamic pressure for

which the nominal aeroelastic dynamics are robustly stable to the entire range of modeling errors as
described by the norm-bounded A?

This question can be answered by computing la for the system in figure 4.2.

4.4 Computing a Flutter Margin with the Structured Singular Value

The nominal flutter problem posed by question 4.2.1 and the robust flutter problem posed by

question 4.3.1 can be solved as a Ia computation. The value of l.t is a sufficient direct indication of the

flutter margin for the nominal system; additional information regarding the norm bound on the uncer-

tainty is required to derive the robust flutter margin.

The nominal aeroelastic model is formulated for stability analysis in the l.t framework in section 4.2 by

introducing a perturbation, 3zl' to dynamic pressure. A nominal flutter margin is computed to answer ques-
tion 4.2.1 by considering the smallest value of this perturbation that destabilizes the model. The nominal

flutter pressure can be directly calculated by computing _t with respect to the perturbation operator 5zi.

The exact value of l.t can be analytically formulated to compute a nominal flutter pressure because a

closed-form solution for _t with respect to a single, real, scalar operator is known. This solution is the

spectral radius of the frequency-varying transfer-function matrix.

/.t(P) = max p(P(jco))
c0_ R (46)

The spectral radius of P(j co) is a discontinuous function of frequency, so computational algorithms

based on searches over a finite set of frequency points may not guarantee the correct computation of

robustness values. A small amount of complex uncertainty can be added to the real uncertainty that
allows a continuous I.t function to be analyzed but introduces unrealistic conservatism. An heuristic
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robustnessindicatorcanbesubstitutedfor It thatconsidersstability overa frequencysegmentbut is not
consideredhere.34'35

A relatively simpleapproachcanbeusedto computeIt with respectto a single real parameterby
consideringthe destabilizingvalueof the parameter.A searchover theparameterspacewill result in
computationof It andthedesiredflutter margin.Lemma4.4.1presentstheprincipleof this approach.

Lemma 4.4.1: Given the plant, P, derived at nominal dynamic pressure, 71o' with a perturbation to

dynamic pressure, 571, arranged in the feedback relationship of figure 4.2, define 5.

5 = min { 5?1 • Fu(P, 571) is unstable }
5_>0

q

_. 1 _nora
Then It(P) _ such that q flutter = 71o + 5 is the nominalflutterpressure and

I_norn _ 5

represents the nominal flutter margin answering question 4.2.1.

Proof:

This result is immediately obvious using definition 3.3.1 for It with respect to a scalar uncertainty

parameter 5- The It is the inverse of the smallest de]tabilizing perturbation, and 5 is computed as the

smallest valuqe of 5?1 that destabilizes P; thus It(P) = _.

[]

Lemma 4.4.1 indicates a computational strategy to compute a nominal flutter margin that does not

require a search over a set of frequency points. The flutter pressure is found by increasing values of 571

until an eigenvalue of the state matrix of F u (P, 8?1) has a negative real part indicating F u (P, 5?1) is unsta-

ble. Algorithm 4.4.2 demonstrates a bisection search implementation that efficiently computes upper and

lower bounds on the minimum destabilizing 571 perturbation to within a desired level of accuracy.

Algorithm 4.4.2 (nominal flutter margin):

Given plant P at nominal dynamic pressure, 71o, affected by perturbation 571 as in figure 4.1."

Define scalars 5uppe r > 51owe r > 0 as bounds on the smallest destabilizing 57t.

Define scalar e > 0 for accuracy.

while (Suppe r- 5lower > e) {

1 + 5lower )571 = _(Suppe r

if F u (P, 571) has an unstable pole), then 5uppe r = 571

else 5lower = 571

}
_110tll

q flutter = 71o + 5upper

Fno m = 5uppe r
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Robustflutter marginsthataddressquestion4.3.1cannotbecomputedusingalgorithm4.4.2because
an additionalsearchover the setof uncertaintyoperatorsh, must be included. These margins must be

computed using the augmented plant P, which includes feedback signals relating the perturbation to

dynamic pressure and the uncertainty description as shown in figure 4.2. Define the block-structured set

of operators, ._i_' which considers a particular perturbation 8z/ and set of operators A describing
model uncertainty.

(47)

A set of plant models, Fu(P,_,Sr) , exists for each value of _5zl that defines the nominal plant at

dynamic pressure 7/ = ?/o + 8z/ and variations to that plant caused by the set of uncertainties/_,. The

robust flutter_ margin_ corresponds to the smallest perturbation 8z/for which an unstable plant, F u (P,7_ 6_),

exists with A6_ e A 8_. If every member of the set of plants Fu(P,_, 6_) is stable, then ?/ = ?/o + 8z7 is not

a flutter pressure and P formulated at ?/is robustly stable to the uncertainty description A.

The smallest destabilizing perturbation 8_/ corresponding to a robust flutter margin can be computed

by a IXcomputation. The Ix framework analyzes robustness with respect to a single, structured operator, so

the operator set used to compute a robust flutter margin must contain the set of uncertainty operators A

along with a range of dynamic pressure perturbations. The Ix will compute the robustness of P with

respect to this operator set to find the smallest destabilizing perturbation to dynamic pressure and the

smallest destabilizing uncertainty operator. Define the _, that contains - sets for a norm-bounded set

of _Szloperators. Asr_

(48)

Imposing the norm bound for 8_ operators as ll o[l <1 may seem overly restrictive because the

units of 8_ are the same as the units of ?/ in the model. This condition implies the _ considers the range

of flight conditions ?/ = gto + 1 lbf/ft 2 for plants formulated by dynamic pressure in units of lbf/ft 2. Such

a small range of flight conditions is not useful for stability analysis unless ?/o is extremely close to the

flutter pressure. This limitation is avoided by introducing a weighting function, Wz/, to the computation
of//.

?/= g:/o + Wz/_Sz/ (49)

A W_/ >1 allows a large range of flight conditions to be considered despite the unity norm-bound

constraint on 8_. This weighting is incorporated into the stability analysis by scaling the feedback signals

between the _Sz/operator and the plant P to form the scaled plant, P.
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A robustflutter margin is computedby analyzingg(P ) with respectto the A. The robust flutter

pressure is determined by iterating over scalings Wzt until the smallest pressure 7:/ = ?/o + Wzl is found
for which the P is robustly stable to the set of uncertainties A. Theorem 4.4.3 formally demonstrates

this concept.

Theorem 4.4.3: Given the plant P derived at nominal dynamic pressure 71o with a perturbation to

dynamic pressure 8zl and set of uncertainty operators A norm-bounded by one arranged in the feedback

relationship of figure 4.2, define the plant P with real diagonal matrix WZl scaling the feedback signals

relating 8 0 and P.

(51)

_rob
Then q flutter = 77o + Wz t

is the robust flutter pressure if and only if it(P ) = 1. Also,

Fro b = W?t
(52)

represents the least conservative robust flutter margin answering question 4.3.1.

Proof

(necessary)

The condition It(P ) = 1 implies that the smallest destabilizing perturbation to P is described by some

7_ e h, with Ilxlloo= l, sono destabilizing A e A exists and the smallest positive destabilizing perturba-

tion to dynamic pressure is at least 8zl = 1, which corresponds to dynamic pressure ?/ = ?/o + Wzt 8zj =

?/o + Wzl" Thus, P is guaranteed to be robustly stable to the uncertainty set A for any perturbation to

dynamic pressure less than W_, so Wzl is a robust flutter margin.

(sufficient)

Assume It(P) > 1. Define real, scalar o¢ < 1 such that It(P) = 1, which implies, from theorem 3.3.2,

that P is robustly stable to all uncertainties A e _, with I1 11=< < 1.Thus,P is not guaranteed to be

stable over the entire range of modeling uncertainty defined by the unity norm-bounded set A, so this

perturbation is not a valid robust flutter margin and does not answer question 4.3.1.

Assume I.t(P) < 1. Define real, scalar c_ > 1 such that B(P) = c_, which implies, from theorem 3.3.2,

that P is robustly stable to all uncertainties A e A with U lloo< Thus, P is robustly stable to an

uncertainty description larger than that defined by the unity norm-bounded set _,, so this condition
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definesa valid flutter marginbut is not the leastconservativerobustflutter marginanddoesnot answer
question4.3.1.

[]

Theonly differencebetweenmodelsP andP resultsfrom thescalingWzl, which scalesthefeedback
signalsbetweenP and 5zl.No externalscalingmatrix is allowedto affect thefeedbacksignalsbetween
P andA because A is defined with a unity norm bound. Computing It of the plant P with an additional

scaling on the lower-loop signals would consider a scaled set of operators A that does not accurately rep-

resent the uncertainty description. Therefore, P only scales the _Sz/ feedback signals.

Theorem 4.4.3 can be modified to compute a nominal flutter margin by changing the identity matrix

in the scaling used to compute P to a zero matrix. This modification eliminates the feedback interconnec-

tion between the model and the uncertainty description A, so It considers only the nominal dynamics and

computes the smallest destabilizing perturbation to dynamic pressure and Fro b = Fno m.

Including the uncertainty description A ensures the robust flutter margin will be no greater than the

nominal flutter margin. The robust flutter margin considers the model used to compute the nominal flutter

margin that corresponds to the uncertainty operator A = 0 e A and the models that correspond to the

remaining operators A _ A. The conservatism in the robust flutter margin makes intuitive sense because

the nominal flutter margin is the worst-case stability boundary for a single model and the robust flutter

margin is the worst-case stability boundary for a family of models.

I'ro b < Fno m (53)

The proof demonstrating the necessary and sufficient condition It(P) = 1 also makes intuitive sense

because the equality sign is needed to ensure the flutter margin is valid without being overly conserva-

tive. If It(P) < 1, then no A _ A causes an instability and the flutter margin is too conservative. If

It(P) > 1, then the system is not robust to all modeling errors A _ A and the flutter margin is not a valid

robust flutter margin.

Theorem 4.4.3 demonstrates a robust flutter margin can be computed by determining a scaling matrix

W_ for which It(P) = 1. Algorithm 4.4.4 implements an iterative approach to compute a scaling matrix

for_which It(P ) _ (1 + E) for some desired level of accuracy E.

Algorithm 4.4.4 (robust flutter margin):

Given plant P at nominal dynamic pressure 7to affected by unity norm-bounded 5zl and A as in
figure 4.2:

Define initial weighting W_I.

Define scalar _ > 0 for accuracy.
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while (it(P) > 1 + e) OR (It(P)< 1 -E) {

Wz/ = .Wz/
It(P)

_rob
q flutter = 77o + W_I

Fro b = W?t

The dynamic pressure 770defining the flight condition for the nominal plant dynamics must be chosen

carefully to ensure the robust flutter margin computed with algorithm 4.4.4 is valid. The nature of 11 and

the upper bound is such that all norm-bounded operators centered around the origin are assumed to be

valid perturbations to the plant dynamics, so positive and negative perturbations to dynamic pressure are

considered by the robust stability analysis. Thus, the robust flutter margin computed by It(P) = 1 could

correspond to either perturbation _izl = 1 or _Szi= -1.

_rob
The actual dynamic pressure at the flutter instability is q flutter = 770 - W_ if 5Z/ = -1. A large weighting

of Wz/> 77o indicates the flutter occurs at a negative dynamic pressure that may be unrealistic for classical

flutter analysis. The value of the nominal dynamic pressure 770 can slide along the real axis to a large value

without loss of generality in the It analysis because this parameter linearly affects the nominal dynamics.

A simple approach to ensure that the robust flutter pressure is a positive dynamic pressure is demonstrated

in algorithm 4.4.5, which iterates over increasing values of 77o until the scaling associated with the robust

flutter margin satisfies Wzl < 770"

Algorithm 4.4.5 (robust flutter margin with 770 iteration):

Given parameters as in algorithm 4.4.4:

Given initial value of nominal dynamic pressure 77o:

valid_margin = FALSE

while (valid__margin == FALSE) {

compute plant P at nominal dynamic pressure 71o

_rob
compute q flutter and associated Wzl from algorithm 4.4.4

if (W_l > 77o), then 770 = 1.1 Wz/

else valid_margin = TRUE

}

The exclusion of low and negative dynamic pressures for stability analysis may not be desirable for

all applications related to aeroelasticity. An example of such an application is the analysis of aeroser-

voelastic dynamics for a high-angle-of-attack aircraft that concerns instabilities at low dynamic

pressures. 36 The procedure for these types of analysis chooses a low value of qo and finds the scaling
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W_ correspondingto 5_/ = -1, which computes the low dynamic pressure instability. Algorithm 4.4.5

can be modified for these applications.

The flutter margin computation must allow for an arbitrary structure of operators A, so an upper

bound such as the function derived in appendix A must be used. Algorithms 4.4.4 and 4.4.5 can be

adapted by replacing the la calculation with a IX upper-bound calculation to compute flutter margins. A

search over frequency points is required when using the upper bound (appendix A), so the accuracy of the

robust flutter margin requires a dense grid of frequencies associated with the natural frequencies of the

worst-case dynamics to be considered.

A simple approach can be implemented if the natural frequency of the unstable dynamics at the nom-

inal flutter pressure can be assumed to be similar to the natural frequency of the unstable dynamics at the

robust flutter pressure. This assumption can be justified if the uncertainty does not change the critical

flutter mode between the nominal and robust flutter pressures, which is often true for systems that have

relatively small levels of uncertainty and clear separation between critical and subcritical modal frequen-

cies. Algorithm 4.4.6 presents this approach, which first computes the frequency of the nominal flutter

mode and then computes a robust flutter margin from the IXupper bound evaluated near that frequency.

Algorithm 4.4.6 (robust flutter margin with reduced frequency grid):

Given the system in figure 4.2:

Compute frequency co associated with nominal flutter dynamics using algorithm 4.4.2.

Define dense frequency grid [2 centered around o3.

Compute robust flutter margin from IXupper bound evaluated at _ using algorithm 4.4.5.

A large and dense frequency grid increases the confidence that computed robustness measure is actu-

ally an upper bound for It. Algorithm 4.4.6 must be used with caution because the assumptions behind its

use may not be satisfied. Computing a robust flutter margin with a dense frequency grid for a particular

aircraft at several Mach numbers and then comparing the frequencies of the flutter dynamics to those of

the nominal flutter dynamics is recommended. If these frequencies are similar, then algorithm 4.4.6 can

be considered for further analysis at different Mach numbers.

4.5 Properties of the Structured Singular Value as a Flutter Margin

The flutter computation method described herein uses IX as the worst-case flutter parameter. The

structured singular value is a much more informative flutter margin than traditional parameters such as

pole location and modal damping, so Ix presents several advantages as a flutter parameter.

The conservatism introduced by considering the worst-case uncertainty perturbation can be interpreted

as a measure of sensitivity. Robust Ix values that are significantly different than the nominal flutter margins

indicate the plant is highly sensitive to modeling errors and changes in flight condition. A small perturba-

tion to the system can drastically alter the flutter stability properties. Conversely, similarity between the

robust and nominal flutter margins indicates the aircraft is not highly sensitive to small perturbations.

Robustness analysis determines not only the norm of the smallest destabilizing perturbation but also

the direction. This information relates exact perturbations for which the system is particularly sensitive.

Thus, Ix can indicate the worst-case flutter mechanism, which may naturally extend to indicate active and

passive control strategies for flutter suppression.
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Dampingis only truly informativeatthepoint of instabilitybecausestabledampingat a givenflight
conditiondoesnot necessarilyindicateanincreasein dynamicpressurewill bea stableflight condition.37
The structuredsingular value computesthe smallestdestabilizingperturbation,which indicates the
nearestflight conditionsthat will causeaflutter instability. In this respect,I.t is a stability predictorand
dampingis merelyastability indicator.

Thesecharacteristicsof !amakethe worst-caseflutter algorithmespeciallyvaluablefor flight test
programs.Aeroelasticflight datacanbe measuredat a stableflight condition and used to evaluate
uncertaintyoperators.Unlike dampingestimation,the_tmethoddoesnot requiretheaircraft to approach
instability for accurateprediction.The_tcanbecomputedto updatethe stabilitymarginswith respectto
thenew uncertaintylevels.The worst-casestability marginthenindicateswhat flight conditionscanbe
safelyconsidered.

Safeandefficientexpansionof theflight envelopecanbeperformedusinganon-lineimplementation
of theworst-casestability estimationalgorithm.Computingl.tdoesnot introduceanexcessivecomputa-
tionalburdenbecauseeachF/A-18 flutter marginpresentedhereinwasderivedin lessthan2 min using
standardoff-the-shelfhardwareandsoftwarepackages.Thepredictivenatureof _tandthecomputational
efficiencyallow a flutterometertool to bedevelopedthattrackstheflutter marginduringa flight test.38
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CHAPTER 5

UNCERTAINTY DESCRIPTIONS IN AEROELASTIC MODELS

5.1 Parametric Uncertainty in Structural Models

Parametric uncertainty denotes operators that describe errors and unmodeled variations in specific

elements and coefficients in dynamic system equations. Recall the generalized aeroelastic equation of
motion for state vector 11 • R n.21

Mf_ + Crl + Krl + ?/Q(s)rl = 0 (54)

Robust flutter margins computed with the Ix method are strongly affected by the choice of uncertainty

descriptions associated with these dynamics, so this uncertainty must be a reasonable indicator of poten-

tial modeling errors. Parametric uncertainty can be directly associated with the structural matrices to indi-

cate specific errors in the finite-element model.

Rn×nDefine an operator, A K • , that describes additive uncertainty of a nominal stiffness matrix
anXnK o. Associate a weighting matrix, W K _ , with this uncertainty such that a stability analysis

should consider a range of stiffness matrices described by all A K with IIA -< a.

K = K o + W K A K (55)

Parametric uncertainty can also be associated with structural elements in a multiplicative relationship.
RnxnDefine an operator, A c e , that describes multiplicative uncertainty of the nominal damping

R nXnmatrix C o. A weighting W C e is again associated with the uncertainty such that the anticipated

range of damping matrices for robust stability analysis is described by all AC with [AC [oo< 1.

C = Co(I + WcAc) (56)

The choice of additive uncertainty for A K and multiplicative uncertainty for A C does not reflect any

generalized assumptions regarding the proper way to model errors in stiffness and damping; rather, each

type is included to demonstrate the different mathematical derivations. Additive and multiplicative

operators are common types of uncertainty models, so demonstrating how these types of uncertainty are

associated with a structural model is instructive. The actual choice of A K and A C is problem-dependent

and can vary with different aircraft and different finite-element modeling procedures.

Rn×nThe uncertainty operators are described in this section as A K, AC _ with real elements

because the operators describe perturbations to the generalized stiffness and damping matrices that are

usually real. These operators are often additionally constrained to be diagonal operators with n indepen-

dent parameters because the generalized stiffness and damping are often computed as real diagonal

matrices. The real and diagonal nature of these uncertainties is not required for Ix analysis, so full-block

complex uncertainties can be used if they better describe the nature of the modeling errors.

Rn×nAlso, the weighting functions WK, W c • are presented as constant and real matrices because

the functions are associated with constant and real stiffness and damping matrices. These constraints on
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theweightingscanberelaxedif thenatureof theuncertaintyisbestdescribedby complexandfrequency-
varyingweightingfunctions.

SubstitutetheuncertainK andC into theequationof motion,includingthestate-spacerepresentation
of the unsteadyaerodynamicforces Q(s) presentedin section4.1. Introduce a perturbation,8z7,to
dynamicpressure,andseparatethenominaldynamicsfrom theunknownterms.

0 = M_ +C¢I(K +?:/DQ)rl+?/CQX

= M_ + CO(I + WC AC )/I + (Ko + WKAK + (qo + 8z/)DQ)rl + (g/o + 8zT)CQX

= _ + [M-tCo/1 + M-I(Ko + ?/oDQ)rl + ?/oM-1CQX]

+ 5z/ [M-IDQ _ + M-1CQX] + A K [M-lWKrl] + AC [M-1CoWc¢I]

= M -1_ + [M-ICo¢I + (Ko + gto DQ)rl + ?to M-1CQ x] + 8z/zz/+ AK ZK +Aczc

M_ 1 _ -1= _+[M-1Co/i + (Ko+?loDQ)rl+qo M CQX]+Wz/+WK+W C

(57)

The signals zzl and wzg are introduced in section 4.2 to relate the perturbation in dynamic pressure to

the nominal plant through a feedback relationship. The feedback operation wzl = 8z/zz/is used where zzt

is a linear combination of the states of the plant.

= M -1 (58)
zz/ M-1DQ r I + CQX

Additional signals are introduced to the plant formulation, where z K and w K are associated with the

uncertainty in the stiffness matrix, and z c and w C are associated with the uncertainty in the damping

matrix. The outputs of the plant z K and z C are formulated as linear combinations of the states.

z K = M-IWKTI
(59)

zC = M-IWcC ori

The feedback mechanism to describe the modeling uncertainty uses a relationship between these out-

put signals and the w K and w C input signals.

w K = AKZ K
(60)

w C = AC zC

The state-space plant matrix can be formulated using these additional input and output signals.
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Figure 5.1 shows how the uncertainty operators and perturbation to dynamic pressure affect this plant
formulation in a feedback manner.
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Figure 5.1. Linear fractional transformation system for robust stability analysis in the _t framework with

parameterization around perturbation in dynamic pressure and uncertainty in structural stiffness and

damping matrices.

The formulation does not directly allow uncertainty in mass to be described by a feedback operator.

The LFT and kt frameworks require uncertainty operators to affect the nominal dynamics in a linear man-

ner, and this requirement precludes introducing mass uncertainty. The inverse of the mass matrix scales

most terms in the state matrix of P(s), including terms involving 7/. Associating a mass uncertainty oper-

ator A M with the mass matrix scaling 7/ would introduce terms of A M _/, which is a nonlinear function
of uncertainty operators and cannot be directly considered by the It method.

5.2 Parametric Uncertainty in Aerodynamic Models

The unsteady aerodynamic forces Q(s) e C n×n can be represented as a state-space model with

nQ states.

Q(s) = DQ + CQ (sI - AQ)-IBQ (62)
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Parametricuncertaintycanbeassociatedwith thematrixelementsof thisstate-spacerepresentationto
describeerrors. Theseerrors can result from severalsourcesin the modeling procedure,including
computationalfluid dynamic algorithmsthat determinethe frequency-varyingforcesand the system
identificationalgorithmsthatrepresentthecomputationalvaluesasastate-spacesystem•

RnQ x nQDefine an operator A A e to describe uncertainty in the state matrix of Q(s). This operator

directly affects a nominal _Qo and describes errors and variations in the poles of the state-space represen-
Rn× n

tation of the unsteady aerodynamic forces Include a weighting function W A _ such that the range

• b Q with []AAQ l oo -< 1.of state matrices to be considered by robust stability analysis is described y all AAQ

AQ = AQo + WAQAAQ
(63)

Define also an operator ABQ _ R nQ×n to describe multiplicative uncertainty in a nominal BQo

matrix of Q(s). A weighting function WBQ E R Q is associated with this uncertainty such that the

range of possible BQ matrices is described by all ABQ with IIABQ[Ioo< 1.

(64)
BQ = BQo(I +WBQABQ)

The choice of additive and multiplicative operators is made for reasons similar to those presented in

section 5. I. One of each type of uncertainty is included to demonstrate the derivation procedures of how

each uncertainty is associated with the nominal aeroelastic dynamics in a feedback relationship. The

actual choice of which type of uncertainty is most suitable to describe errors in AQ and BQ is

problem-dependent.

Also, defining the uncertainty operators as real and weightings that are real and constant is not a

requirement. This section presents the problem formulation with these definitions because associating

these types of uncertainties and weightings with the constant real AQ and BQ matrices makes intuitive

sense. Certainly la can also compute robust flutter margins with respect to complex frequency-varying

weighted uncertainties.

The nominal aeroelastic model in section 4.2 defined the vector x as the states associated with the

state-space model Q(s). The matrices AQ and BQ directly affect the aeroelastic dynamics only through
the state derivative equation for x and do not appear in the other state derivative equations. The aeroelas-

tic plant can be formulated in the la framework by substituting the uncertain values OfAQ.and BQ into

this state derivative equation without considering changes in the derivative equations tor the remaining

states 1"1and rl.

= AQX +BQTi

= (AQo + WAQAAQ)X + BQo(I + WBQABQ)'q

AAQWAQX= AQoX + BQol] + + ABQWBQBQoTI

= AQoX + BQol] + AAQZAQ + ABQZBQ

(65)

= AQoX + BQo_ + +WAQ WBQ
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Severalsignalsareintroducedto this equation,where ZAQ and WAQ are associated with the uncer-

tainty in AQ and ZBQ, and WBQ is associated with the uncertainty in BQ. The signals ZAQ and ZBQ are

output from the plant matrix as linear combinations of the states.

= x
ZAQ WAQ

ZBQ = WBQBQoT_

(66)

The feedback mechanism to describe the modeling uncertainty uses a relationship between these

output signals and the w K and w C input signals.

WAQ -" AAQZAQ

WBQ "" ABQZBQ

(67)

The state-space plant matrix can be formulated using these additional input and output signals.

11

x

wl

zz1

ZAQI

/

0 I 0

_M-I(Ko+?/oDQ) -M-1Co _glM-1CQ

BQo 0 AQo

M-1DQ 0 M-1CQ

0 0 WAQ

WBQBQo 0 0

0 0 0-

-I 0 0

0 I I

0 0 0

0 0 0

0 0 0

rl

11

X

wz/I

WAQI

w%

(68)

Figure 5.2 shows how the uncertainty operators and perturbation to dynamic pressure affect this plant
formulation in a feedback manner.

z;A!
ZBQ

1
w_

WAQ

BQ
970981

Figure 5.2. Linear fractional transformation system for robust stability analysis in the B framework with

parameterization around perturbation in dynamic pressure and uncertainty in AQ and BQ matrices of the
state-space Q(s) model.

39



Associating a ABQ uncertainty operator with the BQ matrix may not seem immediately useful

because considering errors in the poles determined by the AQ matrix is often intuited. This ABQ uncer-

tainty can be essential to accurately describe the modeling errors because errors in terms common to both

AQ and BQ may exist. Such a situation arises for certain modeling representations of aerodynamic lags.

Consider a simplified Roger's form Q(s)matrix that uses two Pad6 approximations to represent lag terms.

s s
Q(s) = +

s+131 s+132

-131 0-131

- -132-132
112

(69)

The poles of this system are determined entirely by the AQ matrix, so uncertainty in the poles can

be entirely described by a AAQ operator associated with the AQ matrix. A similar uncertainty ABQ

should also be associated with the BQ matrix in this case because the 131 and 132 terms appear in both AQ

and BQ. Allowing variation in AQ but not in BQ will introduce unwanted zeros to the system, so the

proper way to model pole uncertainty for this formulation is to include both AAQ and ABQ operators.

The Pad6 approximation appears often in aeroelastic models, so demonstrating the LFT formulation

of Q(s), which includes the uncertainties in poles 131 and 132 in a feedback relationship, may be useful.

The uncertainties in Q(s) can be developed distinctly from the structural uncertainties because LFT oper-

ations allow the structural and aerodynamic models to be combined into a single plant model with a struc-

tured uncertainty description. 10

Define real scalar operators AB! and AB2 to describe uncertainty associated with nominal values of

the poles 131o and 132o. Real scalar weightings WI3 _ and W132 normalize the uncertainty such that the

range of poles to be considered by robust stability analysis is described by all AB, with I1=_111_ <1 and

wit <_1

(70)

Define states x 1 and x 2 of Q(s), and consider an input signal UQ that generates the output signal yQ

by the relationship yQ = QUQ. Substitute the uncertain 131 into the state equation of x 1.

X 1 = -131Xl-131UQ

= -(131o + W[_lA[_l)X 1 - (131o + W[31A[31)u Q

= -131oXl - 131oUQ - A_I(WI31x 1 + W_Iu Q)

= -131oXl - 131oUQ - AI31z_I

(71)

= -131oXl - 131oUQ -W[31
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Performasimilar derivation for the state equation of x 2 .

X 2 = -_2X2- _2UQ

= -(_2o + W_2A_2)X 2- (_2 ° + W_2A_2)u Q

= -_2oX2 - [_2oUQ - A_2(WI32x 2 + W_2u Q)

= --_ZoX2 -- _2oUQ- A_2Z_2

= -[32oX 2 - _2oUQ - Wl_ 2

(72)

The signals zfl_ and w_ are introduced as plant output and input signals to related the uncertainty

ABi in a feedback manner. The signals z_ and w13_ are similarly introduced to relate the uncertainty

AB2 in a feedback manner. The state-space matrix can be formulated to describe the nominal Qo (s)

with these additional input and output signals.

-x_l -13_o o

ix- l 0_
z_ =/wt_ _---(-

z_ 1 w_2

-1 0-131

0 -1 -132

00%,

0 OW_2
0 0

x 1

x !2i

w13]

w13:

UQ

Figure 5.3 shows the block diagram for Q(s) and the uncertainties.

(73)

z_2 _wl31

z_,____iOoC,)_-_ w_2
yo _ _- wo

970982

Figure 5.3. Linear fractional transformation system describing Pad_ approximation to represent unsteady
aerodynamic force matrix in the g framework with uncertainty in lag terms.

5.3 Dynamic Uncertainty

Dynamic uncertainty operators are often associated with aeroelastic models to account for modeling
errors that are not efficiently described by parametric uncertainty. Unmodeled dynamics and inaccurate

mode shapes are examples of modeling errors that can be described with less conservatism by dynamic
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uncertaintiesthan with parametricuncertainties.Thesedynamicuncertaintiesare typically complex in
orderto representerrorsinbothmagnitudeandphaseof signals.

Considera systemP havingtwo modeswith naturalfrequenciesat4 rad/secand30 rad/sec.

l 16 )Is 900 03 (74)P= 2
s2+ 0.4s+ 16 + 0.6 + 90

Define a nominalmodel
modelthehigh-frequencymodeof P.

Po' which will beusedfor stability analysisof the systembut doesnot

ls 6/Po = 2 + 0.4s + 1

(75)

The large difference in natural frequency between the high- and low-frequency modes of P precludes

parametric uncertainty associated with the low-frequency mode of Po from being a reasonable

description of the modeling errors in Po" The magnitude of any parametric uncertainty associated with

the low-frequency mode would need to be extremely large to account for the unmodeled high-frequency

dynamics, so the stability analysis would be relatively meaningless because the large uncertainty would

imply the plant is not accurate at any frequencies.

A multiplicative uncertainty operator, A _ C, can be used to describe the high-frequency modeling

error without introducing the excessive conservatism resulting from a parametric uncertainty description.

Associate a complex, scalar, weighting function W(s) e C with this uncertainty to reflect the frequency-

varying levels of modeling errors.

W = 100 -s +0"5 (76)
s + 500

The set of plants P used for robust stability analysis is formulated to account for the range of dynam-

ics as described by the norm-bounded multiplicative uncertainty A.

P- {Po (I ÷ WA) • IIAII_ <- 1 } (77)

Figure 5.4 shows the block diagram for robust stability analysis of P.

970983

Figure 5.4. Family of plants P = Po (I + AW) with input multiplicative uncertainty.
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Figure 5.5showsthe magnitudeof the transferfunction from input to output for P and Pc' and the
maximummagnitudeof Pc(I + WA), which isanupperboundfor theoutputof P ateachfrequency.The
multiplicativeuncertaintyis ableto boundthemodelingerrorat thehigh-frequencymodewithout intro-
ducingexcessiveconservatismfrom largeuncertaintyassociatedwith thelow-frequencymode.

102 _ _ Plant P

F ----- Nominal plant Pc

101 . ....... Maximum IPo (I + w_) I at- A each frequency

100 _--_.. ,.

Magnitude 10 -1 _ -,_ .... .
_ ........

10-2 _ _" -_ _,

10-3

lO-4- t I I II111t I I I IIIII
10 0 101 10 2

Frequency, rad/sec
g70984

Figure 5.5. Transfer functions for example system with multiplicative uncertainty.

Dynamic additive operators may also be required in the uncertainty description to account for errors

that are not efficiently described by either multiplicative and parametric uncertainties. Modeling errors

associated with a zero of the system dynamics are an example of an error that is best described by addi-

tive uncertainty. Multiplicative operators are not useful in this case because Po (j co) = 0 at the
frequency co associated with the zero of nominal model and, correspondingly, every member of the set of

plants Po(J co)(I + WA) = 0 at this frequency. Additive uncertainty allows the system output for some

member of the set of plants to be nonzero even at frequencies of the zeros of the nominal plant.

Consider a plant P with several poles and zeros.

)o 900P = _ +0.48s + 2 + 0.6s + 900
(78)

Assume the nominal plant Po of this plant is similar to P and has the correct number of poles and
zeros, but the coefficients of the system equations are incorrect.

900)Po = _'_ 2+ O--_4s+ s2 + 0.6s + 900
(79)
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Define anadditiveuncertaintyoperatorA e C thatis normalizedby acomplex,scalarfunctionW to
reflect thefrequency-varyinglevelsof themodelingerrors.

W=O.l_ s + 50 (80)
s+5

The set of plants P used for robust stability analysis is formulated to account for the range of dynam-

ics as described by the norm-bounded additive uncertainty A.

p= {po + WA • I1AII__<1}
(81)

Figure 5.6 shows the block diagram for robust stability analysis of P.

y u

70985

Figure 5.6. Family of plants P = Po + W A with additive uncertainty.

Figure 5.7 shows the magnitude of the transfer function from input to output for P and Po' and the

maximum magnitude of IPo+ WA at each frequency. The additive uncertainty bounds the modeling

error at each frequency, including the frequencies near the zero of the nominal plant, because the output

of P is bounded above by the maximum magnitude of the members of the set P.

Magnitude

101

10-I

10-2

10-3

10-4
10-1

loo__ ......::._/_- ,\ -'/\_..
- i\," / \_.
-- | \'''',. ..........

----- Nominal plant Po _\

....... Maximum _Po + WAI at \
I_ each frequency

[- I 1t Iil111 I II IIItll I I l ttlllL I I II111
10 0 101 102 103

Frequency, rad/sec 970986

Figure 5.7. Transfer functions for example system with additive uncertainty.
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Thesemultiplicativeandadditiveuncertaintiesareparticularlyimportantwhencomparingananalyti-
cal transferfunctionwith experimentaltransferfunctionsderivedfrom flight data.Analytical modelsare
oftencomputedfor a low rangeof frequenciesbecausethehigh frequenciesaddcomplexity to themodel
but do notalwaysaffect thestabilitymarginsof theaircraft.Theexperimentaldatamayindicatea high-
frequencymodethat is not includedin theanalyticalmodel,soa frequency-weighteddynamicmultipli-
cativeuncertaintycanbeassociatedwith themodel.

Theissueof modeshapeuncertaintyis oftenencounteredwhencomparinglow-frequency-predicted
dynamicalresponseswith flight databecausesensormeasurementsaredirectly affectedby the mode
shapes.Both multiplicativeandadditiveuncertaintiesmaybe requiredto accuratelymodelmodeshape
errorsandaccountfor inaccurateresponselevels(whichmaybehigherthanpredictedat somefrequen-
ciesbut lower thanpredictedatothers)andinaccuratefrequenciesassociatedwith polesandzeros.

5.4 Uncertainty Associated with Nonlinearities

The I.t framework described uses linear operators to represent dynamical models and associated

uncertainties but does not admit nonlinear operators. The _t framework is useful for analyzing aircraft

stability despite the constraints of linearity because physical systems, which are always nonlinear, can

often be approximated by linear models to a high degree of accuracy. A classic example of this situation

notes the linearized dynamics are often an acceptable representation of an aircraft operating near trim

flight conditions, so linear models work well in practice for control synthesis and stability analysis. 39

Nonlinear dynamics cannot always be accurately described by a linearized dynamics model, so the
• ,, 40

stability analysis should consider the effects of these nonhneantles. The _t framework can associate

linear uncertainty operators with linear models to describe the errors resulting from some types of

unmodeled nonlinear dynamics. The uncertainty does not actually represent the nonlinearity; rather, the

uncertainty allows the linear system responses to vary with sufficient magnitude to bound a range of non-
linear system responses.

Separating the nonlinear dynamics that cannot be linearized from the nonlinear dynamics that can be

accurately represented by linear models is useful. Separate uncertainty descriptions can be formulated for

each dynamical block, and the resulting operators can be combined using the LFT framework to formu-

late a single, linear, plant model with a structured uncertainty description. Figure 5.8 shows an example

LFT system representation for a nominal plant Po and associated uncertainty A, and a nominal linear

model N O and associated uncertainty AN representing a system element with nonlinear dynamics.

Figure 5.8. Linear fractional

operators.

970987

transformation system with nominal models and associated uncertainty
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The systemshownin figure 5.8 is commonlyusedto describe the coupling between the aeroelastic

dynamics and actuators affecting an aircraft through control surfaces. Actuators can display many types
of nonlinear behaviors and should be considered in the aeroelastic stability analysis, because pilot and

autopilot commands that maintain trim during flight ensure the control surfaces are continuously

moving. 41 The errors in linear models resulting from unmodeled actuator dynamics such as nonlinear

stiffness parameters or hysteresis functions can sometimes be described by a linear uncertainty operator.

Consider the response y of a nonlinear system N that models a system that has a nonlinear stiffness

corresponding to a hardening spring that is valid for the bounded input signal u _ [-10, 10]. Such a

system can represent an element of an actuator model or a nonlinear structural model.

y = Nu = 2u + 0.02u 2 + 0.0082u 3 (82)

Define a linear nominal model N O such that y = N Ou approximates the response of N.

NO =2
(83)

Associate an additive weighting operator AN with N O such that stability analysis considers the set of

plants N.

N ={N O +A N " IANlloo <1} (84)

Figure 5.9 shows that the maximum and minimum magnitudes of the responses of the set N are able

to bound the response of the nonlinear system N for the range u _ [-10, 10]. These bounds are overly

conservative throughout this operating range, but they achieve the desired goal of describing errors in the

linear system response resulting from the unmode!ed nonlinearity.

4O

3O

2O

10

-10

- 2O

- 30
-10

Nonlinear system N
----- Nomlnal linear system No

........ Maximum and minimum__ bounds on set N=N o+A N ,,''''''''''""

-,,_,-" _ ,"

1 I I I 1 t t 1 I
-8 -6 -4 -2 0 2 4 6 8 10

U 970988

Figure 5.9. System responses for hardening spring example.
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A similarprocedurecanbeusedto describeerrorcausedby anunmodelednonlinearsofteningspring.
Considertheresponsey of asystemrepresentedbyN thatis valid for an inputsignalu ¢ [-10, 10].

y = Nu = 2u + 0.005u2- 0.005u3 (85)

Definea linearnominalmodelNO suchthaty = NOu approximatestheresponseof N.

No = 2 (86)

AssociateanadditiveweightingoperatorA N with NO such that stability analysis considers the set of
plants N.

N={No +AN " IZXNI=-<1) (87)

Figure 5.10 shows that the maximum and minimum magnitudes of the responses of the set N are able

to bound the response of the nonlinear system N for the range u _ [-10, 10]. These bounds are also overly

conservative throughout this operating range, but they achieve the desired goal of describing errors in the

linear system response resulting from the unmodeled nonlinearity.

30
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y 0
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- 20

-30 "'""'J

-10 -8

Nonlinear system N

----- Nominal linear system No .--""

__ •...... Maximum and minimum ."

bounds on set N= No + A N .-" .-
• " s*

j,

I I I I I I I t
-6 -4 -2 0 2 4 6 8 10

U

970989

Figure 5.10. System responses for softening spring example.

Another nonlinearity that commonly affects aeroelastic systems is hysteresis. The response of a

hysteretic system depends on the trend of the input signal such that an increasing input signal generates a

certain response, but a decreasing input signal generates a different response. Such hysteresis dynamics

are difficult to express as a simple mathematical formula, so for illustrative purposes, assume N is a

nonlinear hysteresis function whose response y depends on the trend of the input signal. Define a linear

nominal model N O whose response y = N Ou approximates the response of the hysteretic N.
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No

Associate an additive weighting operator AN

plants N.

= 2 (88)

with N o such that stability analysis considers the set of

N= +AN• ll xNIl 1) (89)

Figure 5.11 shows that the maximum and minimum magnitudes of the responses of the set N are able

to bound the response of the nonlinear system N with the hysteresis for the range u _ [-10, 10]. Again,

the bounds resulting from a linear uncertainty description are overly conservative throughout this

operating range, but they achieve the desired goal of describing errors caused by the unmodeled

hysteresis nonlinearity.

30 _ Nonlinear system N •""

----- Nominal linear system NO •""
....... Maximum and minimum ., ""

20

10

0

I I I I I I 1 I I
-3010 -8 -6 -4 -2 0 2 4 6 8 ,0

U 970990

Figure 5.11. System responses for hysteresis example.

Explicitly constraining the operating region of the input signal u E [-10, 10] can be important to

developing reasonable uncertainties to describe errors resulting from unmodeled nonlinearities• The

errors in the linear model can grow excessively large when considering a large range of inputs, so the

uncertainty magnitude would need to also grow excessively large. The conservatism resulting from such

a large uncertainty description may be unacceptable and require the input range to be constrained to more

reasonable limits.

The uncertainty description, even for a constrained operating region, will usually be overly conserva-

tive when describing modeling errors for certain parts of the operating region. The uncertainty is able to

bound the errors in figures 5.9, 5.10, and 5.11, but the maximum and minimum bound are clearly not

optimal. Some amount of conservatism is expected when describing errors resulting from unmodeled
nonlinearities because a linear model, whether a single plant or a set of plants, will usually not be an

accurate representation of a nonlinear system that cannot be linearized.
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Also, several typesof unmodelednonlinearitiesexist that are frequently encounteredin aircraft
systemsbut arenot easilydescribedby linearuncertaintyoperatorsassociatedwith the linear models.
Examplesof thesetypesof nonlinearitiesincludefreeplay,dead-bandresponses,friction, andrate limit-
ing of actuators.

Therobuststability marginscomputedfrom l.twith respectto thelinearuncertaintyoperatorsdescrib-
ing unmodelednonlineardynamicswill alwaysbe somewhatsuspect,becausethis approachcannot
considerstability propertiesuniqueto nonlinearsystemssuchasbifurcationpointsandlimit-cycle behav-
iors.42,43Thisapproachlimits theusefulnessof the].tmethodtosystemsfor which thenonlinearitieshave
smalleffectson theresponseanddonot introducenonlinearinstabilitiesto thecritical flutter mechanism.

5.5 Uncertainty Associated With Flight Data

A theoretical model with an associated uncertainty description can be an accurate representation of

the aeroelastic dynamics of an aircraft, but responses from that model may not identically match flight
data. Additional uncertainties can be associated with the model to describe errors that are observed

between the predicted responses and the measured responses from a commanded excitation to the air-

craft. These uncertainties do not necessarily indicate errors in the model; rather, these uncertainties indi-

cate errors in the process used to generate aeroelastic responses and measure flight data.

One source of error is an incorrect assumption of excitation force used to generate the predicted and

measured responses. The measured excitation force associated with the flight data may not correctly

account for poor hardware performance and nonuniform spectral distribution of the force. Also, inexactly

phased excitation between multiple force mechanisms can excite modes that are not anticipated by a

theoretical analysis. A frequency-varying dynamic uncertainty can be associated with the force input of

the analytical model to describe errors in the excitation.

The phenomenon of nonrepeatibility can cause discrepancies between predicted and measured

responses from multiple occurrences of excitation signals. Nonrepeatibility affects flight data by intro-

ducing slight variations in responses, even for data recorded at identical flight conditions with identical

excitation signals. This unexplained behavior may result from some unmodeled nonlinear dynamic or

inexact excitation that is not correctly measured. External disturbances such as wind gusts or turbulence

can introduce an unmodeled dynamic that inconsistently affects the aircraft responses. A frequency-

varying dynamic uncertainty can be associated with the model to describe nonrepeatible data variations.

Another source of error between predicted and measured responses is an incorrect assumption of

flight condition. Flight data sets are sometimes generated at test points that attempt to maintain a constant

flight condition to match the data sets predicted from a model describing the aeroelastic dynamics at that

same flight condition. Slight variations in flight conditions while the experimental response is measured

may cause some discrepancy between the predicted response and the flight data. Parametric uncertainty

associated with the unsteady aerodynamic model can be used to account for these errors because flight

condition variations only affect the aerodynamic model and not the structural model.

The model may accurately represent the mode shapes of the aircraft but have a poor representation of

the sensor locations. The responses measured by sensors are inherently dependent on sensor location,

with respect to mode shapes, to determine the magnitude and phase of the signal. Additional errors in

magnitude and phase are introduced when considering transfer-function estimates generated by signals

that violate assumptions used in computational algorithms. A frequency-varying dynamic uncertainty can

49



be associatedwith the outputof the plant model to describeerrors in both mode shapeand sensor
locationpredictions.

Thechoiceof signal-processingalgorithmscanalsointroduceerrorsbetweenpredictedandmeasured
responses.The Fourier transform,which is the traditional tool for signalprocessing,assumesseveral
characteristicsof thedatathat maybeviolatedwith transient-responseaeroelasticdata.44Filtering and
wavelet-basedalgorithmsmaybeusedto reduceerrorsintroducedby signalprocessingandreducecon-
servatismin theresultingstabilitymargins.45'46Parameteruncertaintyassociatedwith themodalparam-
etersof the linearmodelmaybe usedto describesomeerrorsin thenatural frequenciesand dampings
observedusingflight dataanalyzedby incorrectalgorithms.Dynamicuncertaintymayalsobe requiredto
describeerrorsintroducedby leakageandaliasingeffects.
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CHAPTER 6

MODEL VALIDATION OF UNCERTAINTY

6.1 Model Validation Using the Structured Singular Value

Robust stability analysis considers the stability of a system subject to a set of modeling errors and

perturbations represented by a norm-bounded A. A logical question that arises is how to reasonably deter-

mine this set. This issue is important for computing robust flutter margins because l.t can be overly con-

servative if the uncertainty is excessive beyond the true modeling errors and can be overly optimistic if

the uncertainty does not sufficiently account for the true modeling errors.

Model validation algorithms can be used to indicate if an uncertainty description is reasonable with

respect to flight data. 47 These algorithms consider whether or not a set of data measurements could have

been generated by a proposed model that includes the nominal dynamics and associated uncertainty oper-

ators and noise and disturbance signals.

Uncertainty operators associated with the nominal plant model specifically in the LFT framework can

be considered by validation algorithms. 48 Frequency-domain algorithms are generated that consider the

model validation problem in the context of control design. 49 Time-domain approaches are also developed

that can be solved with convex optimization algorithms for certain uncertainty structures. 5°

A model validation procedure has been formulated that uses a _t condition to determine if an uncer-

tainty model is invalidated. 51 This procedure uses frequency-domain transfer-function data to determine

if some perturbation A _ A to the nominal plant could produce the measurements. Consider the block

diagram for robust stability analysis of systems with measurement y and forcing u signals shown in

figure 6.1. The model validation question, as applied to uncertainty models, is given in question 6.1.1.

W

y u

970991

Figure 6.1. Linear fractional transformation system for robust stability analysis and model validation with

forcing and measurement signals.

Question 6.1.1 (uncertainty validation): Is there some frequency-varying A _ A for figure 6.1

such that Fu(P, A) could generate the set of observed data y and u?

+ rl z )< n i + n w
Define P(s) _ C n° as a stable transfer-function system matrix such that P e _o_.

n z × n w × n i
Partition this matrix into four elements such that Pll(S) s C , P22(s) _ C n° , and Pl2(S) and

P21 (s) are of appropriate size. P22(s) is the nominal-plant transfer function in the absence of uncertainty.
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p__ IPlIP121 (90)

_21 P22J

Robuststability analysisof this systemis determinedusingthetransferfunction P11,which contains
the feedbackrelationshipbetweentheplantdynamicsandtheuncertaintyoperator.The robuststability
conditiongivenby theorem3.3.3requiresp.(Pll) < 1.

The modelvalidation condition usestheseelementsof P andthe finite-energyfrequency-domain
signalsy, u _ H2 wherethe measurementsare scalar functions y, u e C. Formulate the following

two matrices.

P12 = PI2 u

P22 = P22 u -Y

(91)

The following theorem formulates the model validation test using It. 51

Theorem 6.1.2: Given measurements y generated by inputs u, then the system P with associated

uncertainty set A is not invalidated if

m --m 1

B(Pll - P12P22P21 ) > 1 (92)

This condition may seem counterintuitive in that the desired condition for validation is l-t greater than

one, while the robust stability condition seeks a value less than one. This condition can be explained by

considering the following relationship of y = Fu(P, A) u as shown in figure 6.1.

0 = [P22u-Y] +P21A(I-PI1A)-I[P12 u]

= P22 + P21A(I- P11A)-Ip12

(93)

Define the plant P = {Pl 1' P12, P21' P22}" A value of B(P ) < 1 implies this system is robustly stable

to all perturbations A _ A. This robust stability of p.(P ) < 1 also implies that the loop gain Fu (P, A) is

not singular for any value A _ A. Thus, B(P ) < 1 would contradict the relationship shown in the above

equations that requires Fu (P, A) to be singular to satisfy the input-to-output relationship of the data. In

this respect, the model validation test is actually an inverted robust stability test.

The phrase "model validation" may be misleading. No analytical model can ever be truly validated by

considering a finite set of experimental data. A model may not be invalidated by the data, but no guaran-

tee exists that a different data set could not be generated from the physical system that invalidates the

model. The finite sets of measurement data cannot record the response of the system to an infinite num-

ber of input signals subject to an infinite number of initial conditions. Theorem 6.1.2 reflects this fact by

explicitly stating the condition only determines if the model is invalidated by the data. The system is

assumed to be nearly linear, and the data is assumed to sufficiently represent the behavior of the dynam-

ics, so theorem 6.1.2 represents a model validation test.
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6.2 Validating Norm Bounds for Uncertainty

The value of _t computed using theorem 6.1.2 can be interpreted as a measure of how reasonable the

uncertainty description is. A value of la = 2 implies the uncertainty can be scaled by 2 before the model is

invalidated. Alternatively, a value of It = 0.5 implies twice as much uncertainty is required for the model

to not be invalidated. This interpretation of It, as relating to the size of allowable perturbations, empha-

sizes the relationship of the model validation condition to a robust stability condition.

This model validation is used in practice to generate reasonable norm bounds for an uncertainty

description. The following algorithm can be used to determine a sufficient level of uncertainty required

such that the model is not invalidated by multiple data sets. A small scalar ct > 1 is chosen to scale the

uncertainty set and increase the amount of allowable errors if the size of A is not sufficient.

Algorithm 6.2.1 (Model Validation):

Given frequency-domain data sets {Yl, Y2.... , Yn} and {Ul, U 2..... Un }:

Given frequency-domain transfer-function P with elements P ll' P 12' P21' P22:

Given uncertainty set A with initial norm bound:

Given update scalar ct > 1:

valid = FALSE

while (valid =-- FALSE) {
valid = TRUE

for i = l : n {

P12 = Pl2Ui

P22 = P22ui- Yi

tf It (Pll - PI2P2_P21) < 1 {

valid = FALSE

}
}

PI1

}
= _Pll (equivalent to A = if.A)

It is the required norm-bounded uncertainty

The norm bound on the uncertainty set It is not actually increased with this method as denoted by the

parentheses around the statement It = flA. Scaling the uncertainty and retaining these scalings throughout

the procedure would be difficult. The algorithm is simplified by always considering the uncertainty is

scaled such that It < 1 is always the desired result. This scaling of the uncertainty is actually accom-

plished by the statement PI1 = t:tP11, which scales the feedback signals between the plant and uncer-

tainty operators. The norm bound for the uncertainty that is needed to ensure the uncertainty levels are

not invalidated by the data is scaled into the plant by the parameter t_. Robust flutter margins can be com-

puted directly from the new scaled plant using algorithm 4.4.6 with a desired Ix < 1 condition.
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Algorithm 6.2.1 is a straightforwardimplementationof the modelvalidationtest.The IXvaluesare
only comparedwith 1to determineif themodelis invalidated.More sophisticatedalgorithmscoulduse
thevalueof IXto determinethefactor c_to scaletheuncertainty.Also, the valuesof IXacrossfrequency
couldbeexploited.Frequencieswith low IXvalueindicateareaswheretheuncertaintysetis leastconser-
vative; frequencieswith high Ix areoverly conservative.The scalingot could vary with frequencyto
reflect this information.

Thesituationmayarisewhentheinitial valuechosenfor thenormboundof theuncertaintysetmay
beoverlyconservative.In this situation,themodelvalidationconditionwill passfor eachdatasetduring
thefirst processingof theouterloop.Theinitial normboundcansimplybedecreasedby somelevelcon-
sistentwith the lowest txvaluecomputedduring the validationchecks,andalgorithm6.2.1canbe run
againto computealessconservativeuncertaintydescriptionthatdoesnot invalidatethemodel.

Theorem6.1.2is only valid for scalardatasignalsgeneratedby systemswith asingleinputandsingle
output.Multiple datasignalscanbeconsideredby applyingtheorem6.1.2to eachcombinationof single-
input and-outputsignals.Algorithm6.2.1canstill beusedby simply includingouterloopsto cycleover
thenumberof input andmeasurementsignals.

The model validation algorithm using theorem6.1.2 is a departurefrom traditional methodsof
analyzingflight datato assessaccuracyof an analyticalmodel.The most widely usedalgorithmsfor
analyzingflight dataestimatenaturalfrequenciesandmodaldamping.The modelvalidationprocedure
usingIXconsiderstheresponsedynamicsat eachfrequencywithout explicitly comparingmodalproper-
ties. Thisprocedureenhancesthe ability of the IXmethodto analyzeflutter stability without requiring
dampingestimates.

Anotherinterpretationof algorithm6.2.1usestheuncertaintyA to bound the magnitude and phase of

the possible transfer functions generated by the family of plants Fu(P, A). The structured singular value

ensures the experimental data transfer function lies within these analytical bounds at every frequency.
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CHAPTER 7

PROCEDURE FOR THE _ METHOD

7.1 Model Updating

Generating a model by analyzing flight data is essential for computing a confident stability analysis.

A nominal model generated purely from analytical equations of the predicted aircraft dynamics may not

accurately describe the true aircraft. A model must be generated that accounts for the flight data to ensure

the predicted dynamics represent the true dynamics.

The most direct method of generating a model from the flight data is to identify a system model

entirely from the data measurements. Many system identification algorithms exist that have become

standard tools for systems and control engineers. 52 Direct application of these methods to aeroelastic sys-

tems rarely produces an accurate model that accounts for the dynamics of the aircraft. 2 Aeroelastic

response data is typically of poor quality relative to ground vibration test data because of the low signal-

to-noise ratio and unobserved dynamics in the response measurements that may drastically lower the
effectiveness of system identification algorithms. 2

An alternative method is to use the nominal aircraft dynamical model as an initial estimate to model

the true aircraft. The flight data are then used to update the elements of this model. Several methods have

been devised to update an analytical structural model using experimental data. 53 Model updating can be

performed on the full stress model or a subset computed with Guyan reduction. 54 Generally, considering

the full model is preferable because the reduction may distribute local errors throughout the entire model
if an orthogonality condition is violated. 55

Two basic methods are proposed to update the full structural model using comparisons between

experimental and predicted data. One method updates the mass and stiffness matrices of the finite-

element model. 56 This method suffers from lack of physical interpretation of the matrix updates and

possible numerical conditioning. Another method updates specific parameters in the model. This method

is accurate for small systems but may require an excessive computational cost for large systems.

Aeroelastic models have the additional freedom of updating the aerodynamic and the structural

elements. A method of updating the linear model in a modern control framework has been developed. 32

This method may be overly conservative for describing nonlinearities, and the corresponding stability

margins are only accurate for flight conditions near the instability. A parametric identification algorithm

has been developed that uses flight data to update specific terms in the aerodynamic model through a

nonlinear optimization. 57 This method suffers with flight data because of unobserved dynamics and the

low signal-to-noise ratio in the measurements.

The approach taken in this paper is to update only the uncertainty operators of the robust aeroelastic

model, using the flight data, and leave the nominal dynamics model unchanged. The model validation

condition of theorem 6.1.2 is used with the nominal plant P to generate a reasonable uncertainty descrip-

tion A to associate with P. Figure 7.1 shows the flow of information through the _t method.

Algorithm 6.2.1 presents a procedure to implement the la method in a manner corresponding to

figure 7.1. The model update procedure based on algorithm 6.2.1 actually scales the plant but has the

equivalent effect of scaling the norm bound of the uncertainty description. The algorithm loops over the

model validation procedure until an uncertainty description is determined that is not invalidated by the

flight data. The final step is to compute a robust flutter margin from the scaled plant by using a kt < 1 con-
dition as in algorithm 4.4.6.
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Figure 7.1. Information flowchart to generate plant and uncertainty operators from a system model and

flight data with the _t method.

Algorithm 7.1.1 (robust flutter margins with model updating):

Given nominal plant P:

Given uncertainty set A associated with P:

Given input excitation data u:

Given output response measurement data y:

Define W > I as the scaling update for A

while (Fu(P, A) is invalidated by u, y using algorithm 6.2.1) {

A=WA

}
_)rob

flutter is flutter margin computed from algorithm 4.4.6

Several advantages exist to using this method as compared to traditional model updating methods.

The typically poor quality of flight data, in association with aircraft dynamics consisting of many modes,

makes updating a nominal model difficult. Traditional methods of norm-based update algorithms often

generate a nonunique set of model updates that have no way to determine which update has the most

logical physical interpretation. The method of updating the uncertainty operators based on a worst-case

magnitude avoids this problem.

Also, this method can work with flight data of varying quality. The updated uncertainty description is

highly accurate if the data show a high signal-to-noise ratio and much of the dynamics are observed by

the sensors. If the data do not have these desired characteristics, however, the method can still compute a

flutter margin. An uncertainty description may be difficult to compute if the data do not indicate the

aircraft dynamics well, so the model validation procedure will not require a large magnitude for the

uncertainty operators. The robust model in this situation will closely resemble the nominal model. In this

way, the _ method will always generate a more accurate flutter margin, and at worst, the robust _t flutter

margin will be equivalent to the nominal flutter margin.
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7.2 Approaches to Use Flight Data

A flight test generally consists of maneuvers at several test points that may be at identical or different

flight conditions. The entire flight test program will use many flight tests to measure response data at test

points throughout the flight envelope. The model-updating method that generates uncertainty operators
can use the entire set of flight data from the different test points.

Several approaches are formulated to use multiple flight data sets to update the uncertainty descrip-
tion associated with a nominal plant model. The uncertainty description may be different for each

approach, and the resulting flutter margin will be different for each approach because of the dependence

of l.t on the uncertainty set. Two approaches discussed here are denoted as local and global.

A local approach uses flight data from test points at identical flight conditions. These data are used to

generate an uncertainty description for the nominal model at the particular flight condition associated

with the data. The magnitude of the uncertainty operators is chosen such that a robust model at the single
flight condition is not invalidated by any of the flight data sets measured at that same flight condition
with no consideration of data from other flight conditions.

The local approach shows the benefit of independently computing uncertainty descriptions for mod-

els at different flight conditions. This approach allows each uncertainty description to be more accurate

because, for example, the flight data may indicate much smaller uncertainty operators are required for

subsonic plant models even though large uncertainty operators are required for transonic plant models.

The resulting worst-case flutter margins will be less conservative because less uncertainty is required forthe model.

Algorithm 7.2.1 outlines the local approach to use flight data and compute flutter margins.

Algorithm 7.2.1 (local approach):

Define scalar nf as the number of flight conditions.

Define scalar n as the number of data sets at flight condition i.

ni t
Define vectors ul, u_ .... , u i as input excitations at flight condition i.

1 2 ni tDefine vectors Y i, Yi ..... Y i as response measurements at flight condition i.

Define matrices { P 1, P2 ..... Pnf } as plant models at flight condition i.

fori = 1 :nf {

Choose initial A i

for j=l:ni {

J
validate Fu (Pi, Ai) using y{ and u i

increase size of A i if necessary to validate
}

compute flutter margin 8 iflutter from _t(F u (Pi' Ai))
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A global approach uses the entire set of flight data from test points throughout the flight envelope to

generate a single uncertainty description for all nominal aircraft models. The magnitudes of the uncer-

tainty operators are chosen such that all nominal models with the associated uncertainty description are

not invalidated by any of the flight data sets.

Several advantages and disadvantages exist to using the global approach instead of the local

approach. One disadvantage is a possible large increase in conservatism of the flutter margin because the
uncertainty description is not minimized at each flight condition. A single particularly inaccurate plant

model will require large uncertainty operators that may be highly conservative for plant models at flight

conditions that are better representations of the true dynamics.

One advantage to this approach, however, is that the uncertainty description is truly worst-case with

respect to the entire flight envelope. The worst-case errors from the worst-case flight condition are used

to generate the uncertainty description for all conditions. Also, this approach is not very sensitive to

poorly measured flight data. A poorly modeled modal response may only appear in certain data sets. The

local approach would not include uncertainty for these dynamics at conditions that did not clearly

observe this modal response, so the resulting flutter margin would not account for the true level of mod-

eling errors. The flutter margin generated with the global approach may be more conservative than the

local approach, but this approach introduces a corresponding higher margin of safety.

Algorithm 7.2.2 outlines the global approach to use flight data and compute flutter margins.

Algorithm 7.2.2 (global approach):

Define scalar nf as the number of flight conditions.

Define scalar n i as the number of data sets at flight condition i.

Define vectors u i, u i' "'" u i as input excitations at flight condition i.

tDefine vectors Yi' Yi' "'" y as response measurements at flight condition i.

Define matrices { P 1' P2' """ Pnf } as plant models at flight condition i.

Choose initial A

for i=l: nf {

for j=l :ni{

J
validate Fu(P i, A) using y{ and u i

increase size of A if necessary to validate

}
}

for i=l: nf {

i from [.t(Fu(P i, A))
compute flutter margin _ flutter
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Hybrid approaches have also been formulated that mix the local and global approaches. One straight-

forward hybrid approach is to generate an uncertainty description using all data from a small range of

flight conditions. This approach can be useful for separately considering sets of plant models that are

generated using different techniques. For example, the model-generating package used for this paper

computes all subsonic plant models with a doublet-lattice algorithm and the supersonic models are gener-

ated with constant-panel algorithms. A hybrid approach could be used to reflect this knowledge and

consider groups of subsonic, supersonic, and transonic plants independently.

The approaches outlined here are certainly not exhaustive. A weighted-norm approach can be formu-

lated that uses flight data from the entire flight envelope but depends heavily on a particular subset of that

data. Other approaches could concentrate on particular dynamics through modal filtering techniques to
generate separate uncertainty descriptions for individual modes. 58
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CHAPTER 8

ROBUST FLUTTER MARGINS OF THE F/A-18 SYSTEMS RESEARCH AIRCRAFT

8.1 Aircraft Flight Test

Robust flutter margins are computed for the F/A-18 Systems Research Aircraft (SRA) that is flown at

NASA Dryden Flight Research Center as Ship 845. 59 The SRA is a standard two-seat F/A-18 with

production engines. This aircraft is being used as a test bed for flutter testing, advanced actuator concepts,
smart structures, optical sensors, and avionics systems. 59 Figure 8.1 shows the SRA in flight over the

Mojave desert near Edwards, California.

Figure 8.1 F/A-18 systems research aircraft.

Flutter testing was initiated on the SRA because of a major left-wing structural modification that

allows testing of several hydraulic and electromechanical aileron actuator concepts. The increased size

and weight of these actuators required large and heavy items to be installed, replacing a fitting called a

hinge-half that supports the aileron hinge, actuator, and a fairing. These structural modifications changed
stiffness and damping properties and added approximately 20 Ibm to the wing. Dependency of the aileron

aeroelastic behavior on actuator dynamics warranted the flutter tests.

The results presented in this paper are associated with the F/A-18 SRA with the left-wing structural

modification. More than 30 flight tests were conducted in two sessions, one session between September

1994 and February 1995 and one session between June 1995 and July 1995. A total of 260 data sets are

measured from test points at various conditions throughout the flight envelope.

The flight flutter test program used a wingtip excitation system developed by Dynamic Engineering

Incorporated (DEI). This exciter is a modification of an excitation system used for F-16 XL flutter
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research.6°Thesystemconsistsof awingtipexciter,anavionicsboxmountedin the instrumentationbay,
andacockpit controller.

Aerodynamicforcesaregeneratedby thewingtip exciter.Thisexciterconsistsof asmall,fixed, aero-
dynamicvaneforward of a rotating,slotted,hollow cylinder.Rotatingthecylinder variesthe pressure
distribution on the vaneand resultsin a wingtip force changingat two timesthecylinder rotation fre-
quency. The magnitudeof the resulting force is determinedby the amount of opening in the slot.
Figure8.2showstheF/A-18 aircraftwith a left-sidewingtipexciterin theaft position.

Figure8.2Left wing of theF/A-18 systemsresearchaircraftwith wingtip excitationsystem.

Thecockpit controllercommandsafrequencyrange,duration,andmagnitudefor thewingtip excita-
tion signal.Frequency-varyingexcitationis generatedby changingthecylinder rotationfrequencywith
sine sweeps.Eachwingtip exciter is commandedto act in phase(0°) or out of phase (180 °) with each

other. Ideally, the in-phase data excite the symmetric modes of the aircraft, and the out-of-phase data

excite the antisymmetric modes. In reality, nonideal phasing of the exciters often caused a mixture of

symmetric and antisymmetric modes to be excited.

Flight data sets were recorded by activating the exciter system at a given flight condition. The aircraft

attempted to remain at the flight condition throughout the series of sine sweeps desired by the controller.

The sine sweeps were restricted to within 3 Hz and 35 Hz, and smaller ranges were sometimes used to

concentrate on a specific set of modal responses. Multiple sets of either linear or logarithmic sweeps were

used with the sweep frequency increasing or decreasing. Table 8.1 shows the flight test matrix of excita-

tion parameters and flight conditions for the F/A-18 SRA flutter program.

Accelerometers are available at several points on the aircraft to record modal responses. Each wing

has a sensor on the aileron and at the forward and aft position on the wingtip. Additional accelerometers
are located on each vertical tail and horizontal stabilator.
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Table8.1.Operatingandflight conditionsfor theF/A-18 SRA flight flutter test.

Mach

Altitude, ft

Exciter configuration

Exciter position

Exciter force level

Sweep type

Sweep duration, sec

Sweep range, Hz

Sweep multiples

0.54, 0.65, 0.70, 0.80, 0.85, 0.90, 0.95, 1.05, 1.2, 1.4, 1.6

10K, 30K, and 40K

Symmetric, antisymmetric, and independent

Both forward, both aft, and left aft/right forward

Low and high

Linear and logarithmic

15, 30, and 60

3-35, 3-12, 3-25, 25-35, 35-3, 3-40

1, 2, and 4 sweeps for each maneuver

8.2 Aeroelastic Data Analysis

Aeroelastic flight data generated with the exciter system are analyzed by generating transfer functions
from the excitation force to the sensor measurements. These transfer functions are generated using stan-

dard Fourier transform algorithms. Several inherent assumptions associated with Fourier analysis exist

that are violated with the flight data. The assumptions of time-invariant stationary data composed of sums

of infinite sinusoids are not met by this transient-response data. 44' 61 The amount of uncertainty required

to validate the model can be reduced by using wavelets to accurately process the data but are not consid-

ered in this paper.

Figure 8.3 shows an example of dynamical variations that are observed during flight testing. Two

transfer functions generated from different data sets clearly show some variation. The natural frequency
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Figure 8.3. Flight data transfer functions from symmetric excitation to left wing forward acceler-
ometer for Mach = 0.8 and 30,000 ft demonstrating variation in modal frequency and damping.
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and modal responsearedifferentasobservedby thesetwo datasets,althougheachtestpoint usedthe
samesweepprocedureat identical flight conditions of Mach 0.8 and an altitude of 30,000ft. One
possibility to accountfor suchvariationsis thechangein mass,a maximumof 10percent,betweenthe
heavyweightandlightweightconditionscausedby fuel consumption.Anotherpossibility is thenonideal
phasingbetweentheexciterscausingexcitationthatis notpurelysymmetric.

The deviationsbetweenthe modal responsesin figure 8.3 areusedto generateuncertaintyfor the
symmetricwing first-bendingmode.Similardeviationsobservedin modalresponsesareusedto generate
uncertaintyfor eachmode.Uncertaintylevelsin modesthatarenotobservedareassumedto besimilar to
thoseof theobservedmodes.

Figure 8.3 showsmodelinguncertaintycausedby variationsbetweenthe analytical modeland the
aircraft dynamicsthat changeduring a flight test. Additional uncertainty is introducedbecauseof
improperoperationof theexciters.Severalbehaviorsareobservedbecauseof theseimproperoperations.

The most noticeableof theseimproperbehaviorsoccursas a function of dynamic pressure.The
motorsandrotatingcylinder assembliesbind at high dynamicpressures,causingerraticphaserelation-
shipsbetweentheindividual excitersonoppositewingtips.Figure8.4showsarepresentativeplot of the
phasedifferencein degreesbetweentheleft andright excitersoperatingin symmetricmodefor a sweep
takenat atestpoint with ?::/= 356lbf/ft2.This phaseplot, whichdoesnot maintainthedesired0° phase
differencebut is relativelyconstantandwell-behaved,is in directcontrastto thephasedifferenceat atest
point of ?/= 825lbf/ft 2(fig. 8.5).

200

150

IO0

5O

Phase
difference, 0

deg

- 50

-100

- 150

-2oo I I I I
0 5 10 15 20 25 30

Frequency, Hz
970994

Figure 8.4. Phase difference in degrees between left and right exciters for sweep range 3-30 Hz at
Mach = 0.90 and 30,000 ft at 7:/ = 356 lb/ft 2.
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Figure 8.5. Phase difference in degrees between left and right exciters for sweep range 3-30 Hz at

Mach = 0.90 and 10,000 ft at ?7 = 825 lb/fl 2.

Another improper behavior is the nonrepeatibility observed with the data because of variations in

transfer functions using different data sets recorded at identical flight conditions. Figures 8.6 and 8.7

show an example of such a variation observed for frequency-increasing and -decreasing sweeps. The 1a

method can use the data despite these nonrepeatabilities that would adversely affect traditional system

identification approaches.

The data analysis process is further degraded by a poor measurement of the excitation force used to

generate the modal responses. The excitation force is not directly measured, but a strain-gage measure-

ment is used to approximate this force. The strain gage records lateral shear strain at the exciter vane root.

This measurement is assumed to be representative of the vertical shear and spanwise-moment load at the

wingtip rib. Time-frequency analysis using wavelets clearly shows this strain-gage signal to have some
44

harmonic resonances from the structural response.

The effect of the poor approximation of input force and the erratic behavior of the exciters is to

reduce the quality of the flight data. Methods relying on system identification fail to accurately use the

data to predict a flutter boundary. 57 The g method is able to account for the data anomalies by including

greater levels of uncertainty.
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Figure 8.6. Flight data transfer function from symmetric excitation to left wing forward accelerometer for

Mach = 0.8 and 30,000 ft with frequency increasing sweep from 3-35 Hz.
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Figure 8.7. Flight data transfer function from symmetric excitation to left wing forward accelerometer for

Mach = 0.8 and 30,000 ft with frequency decreasing sweep from 35-3 Hz.
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8.3 Analytical Model

A finite-element model of the SRA is used to compute the aeroelastic dynamics and modal

characteristics of the aircraft. The generalized equations of motion are used to derive a linear, finite-

dimensional state-space model of the aircraft. This model contains 14 symmetric structural modes,

14 antisymmetric structural modes, and 6 rigid-body dynamic modes. The control surfaces are not active,
and no control modes are included in the model. Table 8.2 shows natural frequencies of the elastic struc-

tural modes. These modal frequencies are computed for the aircraft with no aerodynamics considered.

Table 8.2. Elastic natural frequencies of the structural finite-element model of the fully

fueled F/A-18 SRA with left-wing modifications and no wingtip excitation system.

Mode Symmetric, Hz Antisymmetric, Hz

Wing first bending

Fuselage first bending

Stabilator first bending

Wing first torsion

Vertical tail first bending

Wing second bending

Wing outboard torsion

Fuselage second bending

Trailing-edge flap rotation

Fuselage torsion

Launcher rail lateral

Stabilator fore and aft

Wing second torsion

Aileron rotation

Aft fuselage torsion

Aileron torsion

Wing pitch

Wing third bending

5.59 8.84

9.30 8.15

13.21 12.98

13.98 14.85

16.83 15.61

16.95 16.79

17.22

19.81 18.62

23.70 23.47

- 24.19

- 24.35

28.31 28.58

29.88 29.93

33.44

- 37.80

38.60

- 39.18

43.17

The predicted flutter results for this aircraft are computed from the finite-element model using the p-k

method. A detailed explanation of the F/A-18 SRA modeling process and flutter analysis using traditional

methods has previously been published.

The doublet-lattice and constant-panel methods are used to compute the frequency-varying unsteady

aerodynamic forces for several subsonic, transonic, and supersonic Mach numbers. Force matrices for

Mach 0.80, 0.90, 0.95, 1.10, 1.20, 1.40, and 1.60, are available. The unsteady aerodynamic forces are

computed as a function of reduced frequency, k.
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k - m_---_ (94)

The reduced frequency is a function of the true frequency (co), the true velocity (V), and the mean aero-

dynamic chord (_:). Aerodynamic forces generated for ten reduced-frequency points between k = 0.0001

and k = 4.0000 are sufficient for flutter margin computation for this aircraft. Figure 8.8 shows the magni-

tude and phase of a sample calculation of the unsteady aerodynamic forces as a function of reduced

frequency. An additional ten points computed between k = 0.01 and k = 1.00 demonstrate the function is

smooth across frequency, so the original set of ten points is sufficient to describe the behavior of unsteady
aerodynamic forces.

loa

101

Log 100
magnitude

10-1

10- 2

Phase, 0
deg

Ten points between
reduced frequency

+ K = 0.0001 and K = 4
K = 0.01and K= 1

m

+ +

I I llllllt I l llIItll

+

+ +
++

÷÷i

I I II1111t I I It11111 I I1111111 I I IIIIII

+ +

+ +

I I I II11_ I I I1111_-
10-5 10-4 10-3

++ +

+
I t l i]]lrf_--V_T_ f [ l ilflff I I I lrlll[

10-2 10-1 100 101

Frequency, rad/sec 970998

Figure 8.8. Magnitude and phase of the frequency-varying unsteady aerodynamic forces.

The unsteady aerodynamic forces are fit to a finite-dimensional state-space system. The system

identification algorithm is a frequency-domain curve-fitting algorithm based on a least-squares minimi-
zation. 62 A separate system is identified for each column of the unsteady forces transfer-function matrix.

Fourth-order state-space systems are used for each column of the symmetric forces, and second-order

state-space systems are used for each column of the antisymmetric forces. These systems are combined to

form a single multiple-input and multiple-output state-space model of the unsteady aerodynamics forces,
previously designated Q(s). This model has 56 states for the symmetric modes and 28 states for the anti-
symmetric modes.
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Theanalyticalaeroelasticmodelhasinputsfor symmetricandantisymmetricexcitationforces.The
excitationforceis assumedto bepurelysymmetricorantisymmetric.Tenoutputsexistthatcorrespondto
thesensorlocationson theaircraft.

8.4 Uncertainty Description

Noise and uncertainty operators are introduced to the linear aeroelastic model to account for varia-

tions between the analytical model and the actual aircraft. Standard analysis of the linear model is used to

determine the framework for how uncertainty operators enter the system. Two uncertainty operators and

a single noise input are used to describe the modeling uncertainty in the linear aeroelastic model. The

magnitude of each uncertainty operator and the noise level is determined from both reasoning of the mod-

eling process and analysis of the flight data. 63

An uncertainty operator, AA, is associated with the state matrix of the F/A-18 linear model. This

uncertainty models variations in the natural frequency and damping values for each mode. 64 State-matrix

uncertainty can account for errors in coefficients of the equations of motion and changes in the aircraft

dynamics caused by parameter variations such as mass consumption during flight.

The AA is a structured, diagonal matrix with real, scalar parameters as elements. Separate elements
are used to affect each modal response and time lag in the state matrix. The modal response uncertainty

parameters are each repeated two times, and each time-lag uncertainty appears once on the diagonal.

Each repeated modal uncertainty parameter affects natural frequency and damping by allowing varia-

tion in the state matrix elements. Consider formulating the state matrix as a block diagonal with a 2-by-2

block representing each mode. The real component of a modal eigenvalue, er, is the diagonal component

of each block, and the imaginary part, _, is arranged on the off-diagonal positions. Define A i as the block
.th

determining the natural frequency, wi, and damping, _i' of the 1 mode.

II 22
w i = _er2 +ei

Ai = er el _ (95)

el er _i = -er/°l

Scalar weightings, wr and w i , are used to affect the amount of uncertainty in each matrix element.

The amount of variation in the matrix elements and, correspondingly, the amount of variation in the_natu-

ral frequency and damping, are determined by the magnitude of these scalar weightings. Define e r and

el as elements of the state matrix affected by an uncertainty parameter 5.

w

er = er(1 +WrS)

e l = er(1 +wiS)

(96)

Aeroelastic modes typically show low damping values caused by the real component being smaller

than the imaginary component. Because linear modeling techniques often identify the natural frequency

better than the damping value, the weighting for the real component is expected to be larger than that for

the imaginary component. This weighting is reflected by the observed modal parameters in the flight data.

The natural frequencies show variations of +_5 percent from the theoretical model, but the uncertainty in
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the dampingneedsvariationsof approximately +15 percent to validate all the flight data. The scalar
weightings are chosen accordingly.

wr = 0.15

w i = 0.05
(97)

The flight data are only able to determine uncertainty levels for the modal parameters of the experi-
mentally observed modes. The uncertainty levels in the unobserved modes are assumed to be consistent

with these values. Parametric uncertainty is introduced for each modal block in the state matrix, affecting
observed and unobserved modes, using the weighting values given above.

The single scalar blocks of AA are normalized to one by weighting their effect on the time lags of the

state matrix. Variations observed in the flight data are used to determine that a weighting of Wlag = 0.15
is required to admit 15-percent variation in the time lags.

The second uncertainty operator, Ain , is a multiplicative uncertainty on the force input to the linear

model. This uncertainty is used to cover nonlinearities and unmodeled dynamics. The linear model

contains no dynamics at greater than 40 Hz, so the high-frequency component of this operator will reflect

this uncertainty. This operator is also used to model the excitation uncertainty caused by the exciter sys-

tem. Analysis of the flight data indicates the input excitation signals rarely had the desired magnitude and

phase characteristics that they were designed to achieve. The low-frequency component of the input

uncertainty reflects the uncertainty associated with the excitation system used to generate the flight data.

The frequency-varying transfer function for weighting the input uncertainty is given as Win.

s+100
Win = 5 s + 5000 (98)

A noise signal is included with the sensor measurements. Knowledge of the aircraft sensors is used to

determine that a level of 10-percent noise is possible in the measured flight data. An additional noise may

be included on the force input caused by the excitation system, but the input multiplicative uncertainty is

sufficient to describe this noise. Figure 8.9 shows the block diagram for the aeroelastic model with the
uncertainty operators.

Figure 8.9. F/A-18 robust stability block diagram.
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The flight datausedto validatethis uncertaintystructurecovera largerangeof flight points.The
entiresetof 260flight maneuversthroughouttheflight envelopeis considered.Usingasingleuncertainty
descriptionovertheentireflight envelopemaybeconservative.Certainlyassumingthelinearmodelsare
moreaccurateat subsonicand supersonicspeedsthanat transonicspeedsbecauseof flow irregularities
causedby shockformationis reasonable.Additionally, theflight datafrom theexciter systemshouldbe
betterat subsonicspeedsthanat supersonicspeedsbecauseof thedegradedperformanceat highdynamic
pressures.However,the analysisprocessis simplifiedby consideringa singlesetof uncertaintyopera-
tors.This processis equivalentto formulatingtheworst-caseuncertaintylevelsat theworst-caseflight
conditionandassumingthatamountof uncertaintyis possiblefor theremainingflight conditions.

8.5 Nominal and Robust Flutter Pressures

Flutter pressures are computed for a linear model with the associated modeling uncertainty structure

using the It analysis method. 65 Linear systems for symmetric and antisymmetric structural modes are sep-

arated for ease of analysis. These systems can easily be combined and analyzed as a single system; how-

ever, eigenvector analysis would be required to distinguish which critical flutter modes are symmetric

and which are antisymmetric. Each system contains the same number of structural modes (14), and the

uncertainty descriptions are identical for each linear model.

The system shown in figure 8.9 contains three uncertainty blocks. The parametric uncertainty cover-

ing variations caused by dynamic pressure, 5z_, is a scalar parameter repeated 14 times, once for each

elastic mode. The parametric uncertainty block affecting the modal parameters, A A, is a diagonal matrix

with dimension equal to the number of states. Separate scalars along the diagonal represent uncertainty in

each elastic mode, each mode in the aerodynamic force approximation, and each lag term. The uncer-

tainty parameters for the modes are repeated two times; the parameters for the lag terms are single
.th

scalars. Define 5 i as the 1 uncertainty parameter for the system using n m modes and n I lag terms. The

input-multiplicative uncertainty block, Ain, is a scalar for this single-input plant model because symmet-

ric excitation is analyzed separately from antisymmetric excitation.

The parametric uncertainty parameters represent changes in elements of the state-space model. The

variation of _iz/ between +1 admits dynamic pressures between 0 -<?/--- 2g/o. Allowing the modal uncer-

tainty parameters, 51 ..... _nrn, tO vary between +_1 allows 5-percent variation in the imaginary part of the

natural frequency and 15-percent variation in the real part. This variation corresponds to approximately

5-percent variation in the natural frequency and 15-percent variation in the damping value of each mode.

These parameters are real quantities. The input-multiplicative uncertainty contains magnitude and phase

information and is treated as a complex linear time-invariant uncertainty.

Nominal flutter pressures are initially computed by ignoring the modal and input uncertainties. The

structured singular value is computed only with respect to the parametric uncertainty, allowing a range of

dynamic pressures to be considered. Robust flutter pressures are computed with respect to the structured

uncertainty set, A, described above using the structured singular value. Table 8.3 shows traditional flutter

pressures computed using the p-k method and nominal and robust flutter pressures computed with It.
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Table8.3Nominalandrobustflutterpressurescomputedwith p-k and_ methods.

Symmetric,Ibffft2 Antisymmetric,lbf/fl 2

Mach qp-k q nom q rob _/p-k q nom q rob

0.80 3360 3168 2909 4600 4593 3648

0.90 2700 2706 2575 3150 3057 2944

0.95 2430 2388 2329 2600 2751 2572

1.10 5400 5676 4120 5500 3265 2827

1.20 2469 2454 2327 2850 2893 2653

1.40 3528 3432 3034 4600 4439 4191

1.60 4470 4487 3996 5700 5870 4536

The nominal flutter dynamic pressures computed using the _t method can be directly compared with

those computed using the traditional p-k method. Each of these flutter solutions is based on an analytical
model that has no consideration of modeling uncertainty.

The nominal flutter points for the symmetric modes match closely with the p-k method throughout

the flight envelope. The subsonic and supersonic cases show an especially good correlation with the p-k

flutter points. For each of these flight regions, the _t analysis flutter dynamic pressures are nearly identical

(within 1 percent) to the p-k method flutter dynamic pressures. The transonic case at Mach 1.1, however,

shows a slight difference between the two methods. The ].t method computes a flutter point that is greater

than the p-k method. In each Mach regime (subsonic, supersonic, or transonic), the nominal flutter points
are within 5 percent for the two methods.

The antisymmetric modes show a similar relationship between the flutter pressures computed with

the l.t and p-k methods. The subsonic and supersonic flutter points are within 5 percent for the two

methods, but a greater deviation exists at the transonic condition. The _ computes a flutter pressure at
Mach 1.1 that is 40 percent lower than the p-k method indicates.

The nominal flutter points for the _t and p-k methods show the greatest difference for both the

symmetric and antisymmetric modes at the transonic case. The aerodynamics at Mach 1.1 are more

difficult to accurately model than at either subsonic or supersonic speeds. Numerical sensitivity to repre-

sentations of the unsteady aerodynamic forces causes differences in the nominal flutter pressure.

The robust flutter pressures computed using the la method have lower dynamic pressures than the

nominal pressures, which indicates the expected conservative nature of the robust computation. These

new flutter points are worst-case values for the entire range of allowed uncertainty. The subsonic and

supersonic flutter boundaries are not greatly affected by the uncertainty set. In each of these cases, the

robust flutter point is within 10 percent of the nominal flutter point.

The flutter boundary at the transonic case, Mach 1.1, demonstrates significant sensitivity to the

modeling uncertainty. The robust flutter dynamic pressures are approximately 70 percent of the nominal

flutter pressures. This difference is explained by considering the rapid transition of critical flutter bound-

aries near this region. The critical flutter frequencies and the flutter dynamic pressure widely vary
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betweenMachnumbersslightly lower andhigherthantransonic.The smallamountof modelinguncer-
tainty is enoughto causetheworst-caseflutter mechanismto shift, andtheplantassumescharacteristics
moreconsistentwith anontransonicregime.

Table 8.4 shows the modal natural frequenciesfor the critical flutter modes.The frequencies
computedusingthep-k methodandthe IXanalysismethodareclosethroughoutthe flight envelopefor
both the symmetricand antisymmetricmodes.Frequenciesfor the robustflutter solutionsareslightly
different thanthenominalflutter frequenciesbecauseof themodelinguncertaintythat allowed5-percent
variationin themodalnaturalfrequencies.

Table 8.4. Frequenciesof unstablemodesassociatedwith nominal and robust flutter pressures
computedwith p-k andIXmethods.

Symmetric,Hz Antisymmetric,Hz

Mach 0_P -k (On°m (Or°b 0)p-k 03n°m 03r°b

0.80 8.2 7.6 7.7 9.0 9.1 9.1

0.90 7.4 7.3 7.3 9.2 9. I 9.2

0.95 6.8 6.9 6.9 9.1 9.2 9.2

1.10 12.1 13.2 13.0 28.6 28.0 28.3

1.20 26.5 27.4 27.4 26.9 28.9 28.9

1.40 28.1 28.1 28.1 30.4 31.7 31.8

1.60 28.9 30.1 30.1 32.8 32.3 32.1

Table 8.5 shows subcritical flutter pressures computed with the IXand p-k methods. Only nominal sub-

critical pressures are detected with Ix, because the robust pressures are always worst-case critical pressures.

Table 8.5. Subcritical nominal flutter pressures computed with p-k and Ix methods.

Symmetric, lbf/ft 2 Antisymmetric, lbf/ft 2

Mach _/p-k
_tnorn ?/p-k Clno m

0.90

0.95 7450 6919

1.10

1.20 5400 5003

1.40 8970 8959

1.60 8400 8843

4700 4583

5300 5093

6050 6001

8400 7943

The Ix analysis computes subcritical flutter pressures within 10 percent of the p-k method for both the

symmetric and antisymmetric modes. The Ia method is even able to detect the subcritical flutter hump

mode occurring for antisymmetric excitation at Mach 0.9.
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8.6 Nominal and Robust Flutter Margins for a Flight Envelope

The nominal and robust flutter pressures shown in table 8.3 are used to compute flutter margins for a

flight envelope. These flutter margins are determined by the distance between the flutter pressure and the
dynamic pressure at the edge of the flight envelope at a particular Mach number.

Table 8.6 shows the flight conditions for several points at greater than Mach 0.8, which have the high-

est dynamic pressures in the defined flight envelope and the nominal and robust flutter margins. All of
these flutter margins have positive values, indicating the envelope is free of flutter instabilities. The criti-

cal flutter pressures are simply the sum of the flight envelope dynamic pressures and the flutter margins.

Table 8.6. Nominal and robust flutter margins for a flight envelope expressed as allowable

increase in dynamic pressure computed with p-k and la methods for symmetric and
antisymmetric modes.

Flight envelope Symmetric, lbffft 2 Antisymmetric, lbffft 2

Mach ?/ Fp_k F no m Fro b Fp_ k F no m 1-'rob

0.80 948 2412 2220 1961 3652 3645 2700

0.90 1200 1500 1506 1375 1950 1857 1744

0.95 1337 1093 1051 992 1263 1414 1235

1.10 1491 3909 4185 2629 4009 1774 1336

1.20 1438 1031 1016 889 1412 1455 1215

1.40 1252 2276 2180 1782 3348 3187 2939

1.60 1027 3443 3460 2969 4673 4843 3509

The flutter margins are often expressed in terms of the percent change, H, in knots of equivalent

airspeed, KEAS, between the flight envelope and the flight condition corresponding to the critical flutter
pressure. Table 8.7 shows these percentage values.

Table 8.7. Nominal and robust flutter margins for a flight envelope expressed as percent of allow-

able increase in KEAS computed with p-k and _t methods for symmetric and antisymmetric modes.

Flight envelope

Mach KEAS

Symmetric Antisymmetric

I-Ip_k 1-Inom 1-Iro b I-[p_k l-Ino m lip_ k

0.80 529 88 82 75 120 120 96

0.90 595 50 50 46 62 59 56

0.95 628 35 33 31 39 43 38

1.10 663 90 95 66 92 48 37

1.20 652 31 31 26 41 41 35

1.40 608 67 65 55 91 88 82

1.60 550 108 109 97 135 139 109
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A flutter marginyielding a percentageII = 15for allowableincreasein KEAS is commonly used to

determine an operable flight envelope. The flutter margins shown in table 8.7 demonstrate the indicated

flight envelope for the F/A-18 SRA is acceptable because the nominal and robust flutter margins are all

greater than 15 percent for symmetric and antisymmetric modes. The smallest flutter margin occurs for

the symmetric mode dynamics at Mach 1.2, which presents a robust flutter margin of only 26 percent;

however, even this condition is greater than the desired 15-percent margin.

The dynamic pressures at which flutter occurs are converted into altitudes, commonly known as

matched-point solutions, using standard atmospheric equations. Figure 8.10 shows these altitudes plotted

for the symmetric modes, and figure 8.11 shows them for the antisymmetric modes. The flight envelope

of the F/A-18 airplane is shown on these plots, along with the required 15-percent flutter boundary for

military aircraft.

Figures 8.10 and 8.11 show several short solid lines to indicate the p-k flutter solutions throughout the

flight regime. Each of these short solid lines represents the flutter points caused by a specific mode. Flut-

ter points for the symmetric modes shown in figure 8.10 show four solid lines indicating three different

critical flutter modes for the considered range of Mach numbers and a subcritical flutter mode occurring

at supersonic Mach numbers. In figure 8.11, the antisymmetric modes show the onset of flutter from
three different critical modes and three subcritical flutter modes throughout the flight envelope. Table 8.4

shows the frequencies of the critical flutter modes.

The subsonic flutter altitudes for symmetric and antisymmetric modes demonstrate a similar charac-

teristic. The nominal flutter boundary shows a significant variation from Mach 0.80 to Mach 0.95 that is

caused by sensitivity to Mach number for the dynamics associated with the critical flutter mode. The

robust flutter boundary indicates the sensitivity of the plant to errors and the worst-case perturbation. The

higher altitude for the nominal flutter boundary at Mach 0.81 than for Mach 0.80 is reflected in the large
conservatism associated with the robust flutter boundary. Similarly, slight variation of Mach number near

Mach 0.95 is not expected to decrease the nominal flutter margin, so less conservatism is associated with

the robust flutter boundary.

An interesting trend is noticeable for the symmetric mode robust flutter points in figure 8.10 at the

supersonic Mach numbers. The flutter mechanism results from the same modes from Mach 1.2 to

Mach 1.6 with some increase in frequency. Similarly, the altitudes of the nominal flutter margins show

little change for these Mach numbers. The aeroelastic dynamics associated with the critical flutter mode

are relatively unaffected by the variation of Mach over this range, and consequently, each flutter bound-

ary has the same sensitivity to modeling errors.

The robust flutter margins for the antisymmetric modes at supersonic Mach numbers show a slightly

different behavior than the symmetric mode flutter margins. The flutter instability is again caused by a

single mechanism from Mach 1.2 to Mach 1.6, with similar frequency variation for the symmetric modes.
The robust flutter margins demonstrate a similar sensitivity to modeling errors at Mach 1.2 and Mach 1.4,

but at Mach 1.6, a greater sensitivity is shown. The greater conservatism at Mach 1.6 may indicate

impending transition in flutter mechanism to the subcritical mode at slightly higher Mach number.

Figures 8.10 and 8.11 show dark solid lines representing the required boundary for flutter points. All

nominal and robust flutter points lie outside this region, indicating the flight envelope should be safe from

flutter instabilities. The robust flutter boundaries computed with la indicate more danger of encountering

flutter exists than was previously estimated with the p-k method. In particular, the robust flutter margin for

symmetric excitation at Mach 1.2 lies considerably closer to the boundary than the p-k method indicates.
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Figure 8.10. Nominal and robust flutter points for symmetric modes.
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Figure 8.11. Nominal and robust flutter points for antisymmetric modes.

8.7 Computational Analysis

The _t analysis method of computing flutter margins presents significant analytical advantages

because of the robustness of the resulting flutter margin, but the method also has several computational

advantages over the p-k method. The la algorithm requires a single, linear, aeroelastic, plant model at a

given Mach number to compute critical and subcritical flutter margins. An entire set of flutter margins
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canbe easilygeneratedin a few minutesusing a standardengineeringworkstationandcommercially
availablesoftwarepackages.15

The p-k methodis an iterativeprocedurethatrequiresfinding amatched-pointsolution.The aircraft
is analyzedat a particularMachnumberandair density.Theairspeedat theseconditionsresultingin a
flutter instability is computed.This airspeed,however,oftendoesnot correspondto theuniqueairspeed
determinedby thatMachnumberandair densityfor astandardatmosphere.Variousair densitiesareused
to computeflutter solutions,andthecorrespondingairspeedsareplotted.Figure8.12showsanexample
of anairspeedplot for flutter.

Figure8.12showsverticallinesrepresentingtwo antisymmetricmodesthatmayflutter at Mach 1.4.
The p-k methodcomputesa flutter solutionat the airspeedindicatedwherethe modal line crossesthe
standard-atmospherecurve.This flutter solutionis difficult to computefrom only afew air densitycom-
putations.Typically, severalair densitiesareusedto computeairspeedflutter solutions,and a line is
extrapolatedbetweenthe points to determinethe matched-pointsolution at the standard-atmosphere
crossingpoint. The nonlinearbehaviorshownfor mode1 nearthe standard-atmospherecrossingpoint
indicatesanaccurateflutter boundarywouldbeextremelyhardto predictunlessmanysolutionsarecom-
putednearthetruematched-pointsolution.

The p-k methodcanalsohavedifficulty predictingthesubcriticalflutter margins.Thesecondmode
in figure 8.12may or may not intersectthe standard-atmospherecurve.More computationalanalysisis
requiredto determinethe behaviorof this modeat high airspeeds.The Ix analysismethodaccurately
detectsthecritical andsubcriticalflutter marginswithout requiringexpensiveiterations.
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Figure 8.12. Antisymmetric p-k flutter solutions for Mach 1.4.
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CHAPTER 9

RESEARCH EXTENSIONS

9.1 Sensitivity Analysis

Stability margins, especially for high-performance aircraft, may be extremely sensitive to the aircraft

dynamics and flight conditions. Analytical models must be accurate to ensure the estimated stability

properties represent the true aircraft stability properties. Such accuracy is difficult to achieve for complex

modern aircraft designs because components such as flexible structural elements and flight regimes such

as high angles of attack are complex to model. The sensitivity of the stability margins to changes in the

model indicates some degree of confidence in the predicted aircraft stability properties. Margins with low

sensitivity are relatively trustworthy; margins with high sensitivity may be inaccurate in the presence of
modeling errors.

Sensitivity of flutter margins with respect to aeroelastic dynamics is traditionally considered using

statistical approaches. Elements of an analytical model are subjected to random perturbations with known

statistical properties, and changes in stability margins are monitored. A state-space model is used to

compute sensitivity to modal variations with a first-order approach. 12 A finite-element model is used to

estimate sensitivity to higher-order perturbations. 16 These methods are based on Monte Carlo simulations

that can be extremely time-consuming and provide no guarantees of sensitivity to perturbations not
explicitly used in the simulation.

The _t method can be directly applied to compute a measure of the sensitivity of the stability proper-

ties to variations in the analytical model. The conservatism introduced by the worst-case stability margin

is exactly a measure of the sensitivity to variations on the order of the uncertainty operators. Similarity
between nominal and robust margins indicates low sensitivity with respect to perturbations included in A.

Definite advantages exist to computing sensitivity with l-t instead of statistical approaches. The

exceedingly high number of perturbations needed for Monte Carlo simulations of complex systems is

replaced by a single calculation because operator theory ensures I.t considers all perturbations A _ A.

Also, the sensitivity is guaranteed to be worst-case with respect to these perturbations.

9.2 On-Line Stability Tracking

Flight flutter testing incurs dramatic time and costs for safely expanding the flight envelope to ensure

no aeroelastic instabilities are encountered. Traditional flight test methods for determining flutter margins

that track estimates of modal damping obtained from flight data are inefficient and dangerous. 2 Multiple

data sets must be taken at each test point to ensure sufficient excitation of critical modal dynamics. Also,

the envelope must be expanded in small increments because damping only indicates stability at the

current test point and cannot be reliably extrapolated to consider other flight conditions. Several proposed

on-line methods use modal filtering, parameter identification, and envelope analysis to increase confi-

dence in the flutter boundary. 66 These methods, like damping tracking, compute stability indicators
rather than predictors.

The _t method is extended to compute stability estimates on-line during a flight test. The procedure

uses flight data from the current test point to update the uncertainty description and compute a new flutter
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margin.67Local and global approachesareformulatedto reflectdifferentdegreesof confidencein the
modelandflight data.

The conceptof a flutterometeris introducedasaflight test tool to indicatetheproximity of a flutter
condition.38The on-line applicationof IXis a suitablealgorithmfor sucha tool becauselais a stability
predictorandnotmerelyastability indicator.Theflutterometeris anticipatedto greatlyimprovetheeffi-
ciencyof flight flutter programs.Thetimeandcostcanbe reducedbecausetheanalysistime ateachtest
point is reduced,and becausethe predictivenatureof IXallows greaterdistancein flight conditions
betweentestpointsbecausetheflutter boundaryis indicated.Also, flight testsafetyis increasedbecause
theworst-casenatureof IXintroducesconservatismto thepredictedflutter boundary.

9.3 Robust Aeroservoelastic Stability Analysis

Aeroservoelastic dynamics couple structural dynamics, control dynamics, sensing, aerodynamics,

and actuation. 68 Stability analysis must account for the flutter dynamics and any unstable interactions

caused by the control system. More uncertainties inherently exist in an aeroservoelastic model because of

poor actuator modeling, nonlinear effectiveness of control surfaces, and noisy feedback measurements.
Incorrect margins of aeroservoelastic stability may result from analysis that does not account for these

• • 69
model uncertainties.

Several traditional approaches are used to analyze aeroservoelastic stability• Gain and phase margins

can be computed for single-input and single-output transfer functions .21 This approach does not charac-

terize robustness and does not easily extend to multiple-input and multiple-output systems. An approach

using singular values associated with loop-sensitivity functions has also been developed -41 This method

considers robustness but does not provide necessary and sufficient conditions for robust stability.

The ix method can be immediately used to compute aeroservoelastic stability margins. 36 The closed-

loop system, including the controller and all uncertainty operators, is formulated in the LFT framework,

and _t computes a worst-case stability margin. This framework allows flutter and aeroservoelastic stabil-

ity margins to be easily computed from the same model.

9.4 Nonlinear Limit-Cycle Oscillation Analysis

The flutter phenomenon analyzed in this paper is a destructive instability associated with linear

operators. Another phenomenon known as a limit-cycle oscillation is a potentially destructive instability
associated with nonlinear systems. The nonlinearities can arise from structural dynamics, such as nonlin-

ear stiffness functions and freeplay, and from the aerodynamics caused by flow separation and

shock movement. 7°' 71

The ix method as described in this paper is not immediately well-suited to analyze highly nonlinear

systems. Linear operators can be used to bound uncertainty for small amounts of nonlinearity, but this
formulation will be overly conservative when the nonlinearities are significant. The ix method will not

even detect or characterize many limit-cycle oscillations because these phenomena, which can be

destructive to the aircraft, are actually stable in the sense of Lyapunov.

An approach to extend the ix method to include nonlinear limit-cycle dynamics has been developed.

The nominal model for this approach is the linear model that represents the best approximation to the

aircraft dynamics. The flight data are used to generate a nonlinear operator to associate with the linear
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operatorthrough feedback that allows the closed-loop system to model the observed nonlinear behavior

of the aircraft. Uncertainty descriptions are also generated for the linear and nonlinear operators, and

robust stability theory is used to compute a worst-case stability margin.

Two approaches are investigated to analyze a nonlinear aeroelastic system. 72' 73 The first approach

uses multiresolution wavelets to identify nonlinear behavior in the flight data. 74 These wavelets present

time and frequency information that allow a more accurate representation of the observed dynamics. 75

Another approach is based on nonlinear system identification in the LFT framework. 76 This approach

will simultaneously generate a nonlinear operator and an uncertainty description for use with robust

stability analysis.
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CHAPTER 10
CONCLUSION

A structured singular value (it) analysis method of computing flutter margins has been introduced.

This method analyzes robust stability of a linear aeroelastic model with uncertainty operators. Flight data

can be used to formulate the uncertainty operators to accurately account for errors in the model and the

observed range of aircraft dynamics caused by time-varying aircraft parameters, nonlinearities, and flight

anomalies such as test nonrepeatibility. The It-based approach computes flutter margins that are robust or

worst-case, with respect to the modeling uncertainty.

Nominal and robust flutter margins have been computed for the F/A-18 Systems Research Aircraft

(SRA) using It and p-k methods. The similarity of the nominal flutter margins demonstrates the It method

is a valid tool for computing flutter instability points and is computationally advantageous. Robust flutter

margins have been generated with respect to an uncertainty set generated by analysis of extensive flight

data. These margins are accepted with a great deal more confidence than previous estimates because

these margins directly account for modeling uncertainty in the analysis process. The robust flutter mar-

gins indicate the desired F/A-18 SRA flight envelope should be safe from aeroelastic flutter instabilities;
however, the flutter margins may lie noticeably closer to the flight envelope than previously estimated.

This method introduces It as a flutter margin parameter that presents several advantages over tracking

damping trends as a measure of a tendency to instability from available flight data. The It extends to

provide information about model sensitivity and is equally suitable for aeroelastic and aeroservoelastic

analysis. The predictive nature of It makes it particularly attractive for flight test programs because a

robust stability margin can be computed using data from a stable test point.

Dryden Flight Research Center
National Aeronautics and Space Administration

Edwards, California, October 20, 1997
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APPENDIX A

UPPER BOUND FOR THE STRUCTURED SINGULAR VALUE

The structured singular value, B, is a difficult quantity to compute and appears to be a nonpolynomial-

hard (NP-hard) problem. 77 Upper and lower bounds have been derived that can easily be computed. The

lower bound can be solved by a power iteration that extracts the smallest destabilizing perturbation. 2° The

upper bound can be posed as an optimization problem to present a conservative bound on the worst-case

stability properties of the system. This paper is primarily concerned with computing a worst-case stability

analysis, so this appendix concentrates on the optimization formulation to compute a B upper bound.

Question A.0.1: What is an upper bound for B with respect to a general structured uncertainty
description that can be computed?

A simple upper bound for la is immediately obvious from definition 3.3.1.

g(P) -< O(P) (AI)

This upper bound is essentially the robustness as measured by the small gain theorem and can be highly

conservative when the uncertainty operator is structured. The conservatism in this upper bound can be
reduced by considering two properties of singular values.

Property A.0.2: The maximum singular value has a multiplicative property.

O(p)o(p-1) = 1 (A2)

Property A.0.3: The maximum singular value has a triangle-inequality property.

O(DP) < O(D)O(P) (A3)

These properties demonstrate the maximum singular value of a scaled matrix is less than or equal to
that of an unscaled matrix.

Lemma A.0.4: Given matrix P _ C n x n and invertible D _ C n x n then

O(DPD -l ) _<O(P) (A4)

Recall the definition of the uncertainty structure given in section 3.2.

A = A = diag 8 R IR_ ..... 5m IR m.... ' _n Ic n, Al, "", Ap

×ci}

(A5)

A set of scaling matrices is defined with structure similar to the uncertainty structure. The set _9

contains blocks to scale with every complex and real uncertainty block. 20
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{ (DR. c c CIcl, Cicp)D = D = diag , .... Dm ' D1 ' ..., Dn, d 1 ..., dp

R cRiXRi C ×ci =D* }• D _ ,D _ C ci ,die C,D >0

(A6)

The set of scalings G affect only the real parametric uncertainty blocks. 78

{ RixRi }
G = G = diag (G 1, ..., G m, 0 ..... 0) • G i e C , G = G*

(A7)

Several advantageous properties of these scalings exist.

Property A.0.5: Symmetric factors and inverses of scaIings are valid scalings.

Property A.0.6:

1 1

D -l, D -_, D _ e D for every D e D

Every scaling D e D and G e G commutes with ever)' uncertainty A e A.

(A8)

DA = AD (A9)

GA = AG

The IXis shown to be invariant under transformations using the scaling matrices D. 20 This invariance

arises as a direct consequence of Properties A.0.5 and A.0.6, which demonstrate A = DAD -l • Thus, com-

puting IXwith respect to A is equivalent to computing tx with respect to DAD -1 for all D e D. A new

upper bound for IXis formulated using these scaling matrices.

IX(P) <_ inf O(DPD -1) -< O(P) (A10)
DeD

This upper bound is less conservative than the unscaled upper bound because of the final inequality

that is a consequence of lemma A.0.4. This upper bound uses a search over all valid scaling matrices to

find the optimal scaling matrix that reduces the conservatism in the robustness computation. This upper

bound can be formulated as a maximum eigenvalue condition as demonstrated in lemma A.0.7.

Lemma A.0.7: The constant matrix P is robustly stable and IX(P) < 1 with respect to the set A if

1 1

De-D

(A11)

or equivalently

inf _,(P*DP - D) < 0 (A12)
D_D

This upper bound allows scalar uncertainty parameters to lie within a norm-bounded disk centered in

the complex plane that can be conservative if these parameters are real. The conservatism can be reduced
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by introducingthe secondset of scalingmatrices,G, that affect only the real parametric uncertainty

blocks. These scalings restrict the uncertainty set to lie within a norm-bounded disk covering the real axis

between 1 and -1, but that disk is allowed to be centered off the origin. A new upper bound is formulated
with both D and G scaling s.78' 79

_t(P) < dmax(O, 0_,)

0_, = infmin {o_" P*DP+j(GP-P*O)-o_D<0}
De-D oc_R

_G (AI3)

This upper bound is presented as an optimization in lemma A.0.8.

Lemma A.0.8: The constant matrix P is robustly stable, and _t(P) < 1 with respect to the set A, if

inf {(x" _.(P*DP + j(GP - P'G) - uD) < 0} < 1
DeD

G_ G
(A14)

The G matrices are zero if no real parameter uncertainty blocks exist in the system, so the condition in

lemma A.0.8 reverts to the condition in lemma A.0.7. When the G matrices are nonzero, the additional

terms in the new upper-bound condition arise by using an additional constraint on the signals in the

system. 78 Consider a signal in the closed-loop system relating an uncertainty signal. The system

equation takes on the following form if the system is well-posed, ignoring the extraneous error and
disturbance signals.

APx = x (AI5)

Allow the uncertainty to be a single repeated real parameter, A = 5 1 with 5 e R, and take the complex
conjugate transpose of the entire equation.

_Sx*P* = x*

Combining this formula with a scaling G _ G leads to the following.

x*GPx = _Sx*P*GPx = x*P*G(6Px) = x*P*Gx

The following matrix is derived from the right and left sides of this equation.

(A16)

(A17)

x*(GP-P*G)x = 0

Consider the matrix term of the complex uncertainty robustness upper bound scaled by x.

x*(P*DP - ctD)x < 0

Combining the two equations leads to the new upper-bound condition.

(A18)

(A19)

x*(P*DP+j(GP-P*G)_ _D)x <0 (A20)
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This g upperbound is directly relatedto robuststability analysisresultingfrom the small gaintheo-
rem.78TheD scaling matrices use structure in the uncertainty; the G matrices use additional phase infor-

mation provided by real, parametric, uncertainty blocks .79 This robustness condition is also related to a

stability criterion used in absolute stability theory where the scaling matrices enter as Popov multipliers -8°

The It upper-bound conditions in lemma A.0.7 and lemma A.0.8 compute the robustness of a constant

matrix to simplify the equations without carrying to terms throughout the derivations. In practice, the

robustness must be computed for physical systems described by linear, time-invariant transfer functions,

G e R',_,_, which are complex-valued matrix functions of frequency. The upper-bound conditions are

computed for these transfer functions by including an additional search over frequency to find the worst-

case upper bound.

Lemma A.0.9: The transfer-function matrix P(j 60) e _'d_ is robustly stable and It(P) < 1 with

respect to the set h, if

max inf {a" _,(P(j o3)*DP(j o_) + j(GP(j o_) - P*(j o_)G) - otD) < 0} < 1 (A21)
O) DeD

Geq

Established software packages compute the It upper bound by finding optimal scaling matrices

at distinct frequency points .15 Frequency-varying scalings commute with linear time-invariant (LTI)

uncertainty that may not accurately capture the nature of the modeling errors. Restricting the scaling

matrices to be constant with no frequency variation allows consideration of uncertainty operators with

linear time-varying (LTV) behavior• The It upper bound for complex uncertainty is a necessary and suffi-

cient condition for robust stability of an LTI plant with complex LTV uncertainty for any block struc-

ture. 81 Computing robustness measures for LTI systems with complex LTV uncertainty has been

addressed for finite-energy signa ls82 and for finite-gain signals. 83 Related papers have studies of robust-

ness conditions for systems with some type of rate bounds on the LTV uncertainty -84

In general, a system will require both LTI and LTV uncertainties blocks to accurately describe the

modeling errors, parametric uncertainties are associated with physical elements of the system that are

necessarily real and often time-varying. Dynamic uncertainties are used to introduce magnitude and

phase variations in uncertain signals and should be considered time-invariant. Introduce two sets of struc-

tured uncertainty operators.

_Tv(t){A(t) = diag@lRiR, ' R I C CI ....
.... t_rn Rrn' i_ l ic, ..., 8n Ca, A1, Ap)

• 5R(t) _ R, 8C(t) _ C, Ai(t) _ cCiXCi} (A22)

. (5 R R I C CATI(OI) A(_)=dlag llR1,...,_m Rm,_llcl'""SnICn '

' _R(o))E R, _C(f-O)E C, Ai(O))E C ci×ci}

(A23)

The set A TV contains all LTV uncertainty operators that are allowed to change infinitely fast as a

function of time. Other researchers have investigated limits on the rate variation of complex time-varying
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parametersthat arenot addressedin this paper.84Correspondingly,the setA TI contains all LTI uncer-

tainty operators that are allowed to vary with frequency. These sets are allowed to enter the problem as

shown in figure A. 1.

-_TI (w) _-_

971003

Figure A. 1. Block diagram with LTI and LTV uncertainty.

Associated with these uncertainty descriptions are scaling matrices. Constant scaling matrices, DTV ,

are structured like 9 to associate with the time-varying uncertainty, A TV" Frequency-dependent scalings,

DTI (CO), are associated with the time-invariant uncertainty, ATI. The block structure of each of these

sets matches the block structure of the corresponding uncertainty set.

The uncertainty and scaling matrix sets can be combined into single sets for ease of notation.

= diag{ATi (co), ATV (t)}

D = diag{DTi (co), DTV }

= diag{GTi (co), GTV }

(A24)

Lemma A.0.10 describes the robustness upper-bound condition.

Lemma A.0.10: Given some ct > 0 and norm-bounded uncertainty _ such that

1
maxco O(ATI(co)) <

max O(ATv(t)) < 1
t o_ (A25)

then the system described by transfer function P(j 03) is robustly stable with respect to _ if scaling matrices

D _ Z) and G _ G exist such that:

max _.(P(jco)*D(co)P(jco) + j(G(jco)P(jco) - P(jco)*G(CO)) - o_2D(CO)) < 0
(9 (A26)

The search for optimal scaling matrices that achieve the lowest robustness value possible can be for-

mulated as an optimization to minimize ct subject to a constraint function associated with an eigenvalue

condition. An additional constraint arises from restricting the _9 scaling matrices to be positive definite.
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subject to

mln o_
co

-M*DM -j (GM - M'G) + o_2D > 0
D>0

(A27)

This upper-bound condition is written in this format to ease understanding of the function and

develop solution algorithms. Specifically, the minimization problem as shown above with the eigenvalue

constraints is a linear matrix inequality (LMI). The LMI is a convenient framework to use because com-

mon properties global to all LMI problems exist. 85 The main property states an LMI is a convex function
of the variables that allows solutions to be computed using standard convex optimization algorithms. The

ellipsoid method and the interior point algorithm of the method of centers are shown to be efficient for

LMI solutions. 86--88

This optimization involves a search over frequency. Only a finite set of frequency points are used in

practice, and engineering judgment must be used in choosing the set of frequency points. Testing the
robustness condition at more frequency points will increase the accuracy of the upper bound, but the

number of free parameters will rise accordingly and increase computational time. 89
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APPENDIX B

NOMINAL AEROELASTIC MODELS IN THE STRUCTU_D SINGULAR VALUE

FRAMEWORK WITH KNOWN AERODYNAMIC STIFFNESS AND DAMPING

This paper presents an aeroelastic model formulated by approximating the unsteady aerodynamics as

a state-space system. The unsteady aerodynamic forces are treated as an unknown system with no

specialized structure. This appendix considers formulating a state-space system to the unsteady aerody-

namics with a specified structure. The resulting aeroelastic model is parameterized around dynamic pres-

sure, and the structured elements of the aerodynamic forces appear in the model.

The general formulation shown in section 4.1 approximates the unsteady aerodynamic forces as a

state-space system. This unstructured formulation does not explicitly include additional information

regarding the aerodynamics that can be obtained from sources other than the computational model. In par-

ticular, the steady aerodynamics and first-order derivatives are often measured from wind-tunnel testing.
Two matrix terms are introduced to the unsteady aerodynamic formulation to include this information.

Q(s) =
A° + sA1 + I_C QQ DQBQl

= A 0 + sA 1 + DQ + CQ(SI- AQ)-IBQ (BI)

This system is quite similar to Karpel's form. 29 The main difference is the absence of an additional

s2A2 term. This term is typically not available from experimental data and is not explicitly represented in
this formulation.

The state-space elements, {AQ, BQ, CQ, DQ}, are computed using standard system identification

algorithms. The known matrix elements are subtracted from the unsteady aerodynamic force data, and the

resulting system, Qss (s), is approximated by the state-space elements.

Qss (s) = Q(s) - A 0 - sA 1 --- [j[-Q BQ|']

LcQ DQ /
(B2)

RnxnGiven the number of generalized states, n, such that A0, A 1 e and the number of aerodynamic

RnQ x nQ RnQ × n n × nQ R n × n
states, nQ, define AQ e , BQ e , CQ e R , and DQ _ as the elements of the

state-space system approximating Qss(S).

The aeroelastic model is extended to include the additional A 0 and A 1 terms. Consider the signal, y,
nQ

generated by an input to the state-space portion of force matrix. Define the signal, x e R , as the vector

of aerodynamic states.

Y = Qss (s)lq (B3)
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Formulate the aeroelastic differential equation using x.

0 = Mi_+

= M_+

==M_+

=M_+

=Mi_+

=M_+

C/_ + Krl + ?/Q(s)rl

C/! + Krl + q(A0 + sA1 + DQ + CQ (sI - AQ )-IBQ )rl

(C + ?/A1)T1 + (K + ?tA0)rl + ?tQss (s)rl

(C + g/A1)/! + (K + ?tA0)rl + ?:/Y

(C + ?/AI)TI + (K + ?TA0)rl + _](CQ x + DQrl)

(C + F/AI)T1 + (K + 77A 0 + _DQ )1"1+ g:/CQ x

(B4)

A state-space system is formulated using the generalized states, rl and rl, and the unsteady aerody-

namic states, x. The state-update matrix is determined by the following three differential equations.

Iill 0 1= M-I(K+_A0+g/DQ) -M-I(c+r:/A1 ) -?/M-1C

BQ 0 AQ J[_

(B5)

This state-space aeroelastic can be parameterized around dynamic pressure. Consider an additive

perturbation to dynamic pressure, 8?/ e R.

?/ = ?:/o + 80 (B6)

Separate terms in the system dynamics that involve 8zI.

0 = M_ + (C + ?]A1)TI + (K + ?/A 0 + ?/DQ )1"1+ 77CQX

= Mi] + [(C + ?/o AI)/i + (K + g/oA0 + g/DQ )rl + ?:/ofQ x]

+ 157:/ [AI_ ! + A0r I + DQI] + CQ x]

M-1= _ + [M-I(c + 77oA1)rl + (K + ?/oA0 + qo DQ )rl + ?/oM-1CQ x]

+ 15?/[M -1Alfl + M -IA01 i + M -1DQI"! + M-1CQ x]

= _ + [M-I(c + OoA1)/!

= _ + [M-I(c + ?/oA1)T1

+ M -1 (K + _/o A0 + _/oDQ )TI + g::/oM-I CQ x] + 15?/z

M-1+ (K + ?/oA0 + ?/oDQ )rl + ?/oM-1CQ x]+w

(B7)

The signals z and w are introduced into this formulation to associate the perturbation in dynamic

pressure to the nominal dynamics in a feedback manner. The signal z can be generated as an output of the

plant because it is a linear combination of states.

(BS)= M -1 M -1 M -1z Alfl + M-1A0rl + DQrI+ CQX
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The signal w is related to z by the dynamic pressure perturbation.

w = 6zl z (B9)

The state-space aeroelastic model for nominal stability analysis in the B framework is formulated

using the state-update matrix. The matrix is determined by the dynamics at the nominal dynamic pressure

and the additional input and output signals used to introduce perturbations to the dynamic pressure. That

perturbation, 6z/, is not an explicit parameter in the state-space model because the perturbation only
affects the plant through a feedback relationship as determined by the signals z and w. Define the transfer

function P(s) generated by state-space matrices such that z = P(s)w.

h

X

Z

I-M-1 (K + ?/oO0 + C-/oDQ)

BQ

M_I(Ao + DQ)

I 0

-M -I(C + ?:/oAl) -TTM-1CQ

0 AQ

M-tA1 M-ICQ

0 11

-I fl

0 (B I0)

Figure 4.1 shows the feedback interconnection between the perturbation in dynamic pressure and the

nominal plant model parameterized around that perturbation. This interconnection is a linear fractional

transformation, and the small gain condition of lemma 2.4.1 or the structured singular value condition of

theorem 3.3.3 can be directly applied to analyze stability with respect to a variation in the flight condition

_/. This system reduces to the parameterized model presented in section 4.2 if A 0 = A 1 = 0.
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